Fix Next.js 15 Suspense boundary errors and remove Docker files
- Add Suspense boundaries for useSearchParams in bible and search pages - Extract search page content to separate component for proper client-side rendering - Remove all Docker configuration files and temp documentation - Build now passes successfully without TypeScript or Suspense errors 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -1,372 +0,0 @@
|
||||
# Azure OpenAI **embed-3** → Postgres + pgvector Ingestion Guide (Bible Corpus)
|
||||
|
||||
**Goal**: Create a production‑ready Python script that ingests the full Bible (Markdown source) into **Postgres** with **pgvector** and **full‑text** metadata, using **Azure OpenAI `embed-3`** embeddings. The vectors will power a consumer chat assistant (Q&A & conversations about the Bible) and a backend agent that generates custom prayers.
|
||||
|
||||
> Sample corpus used here: Romanian *Biblia Fidela* (Markdown). Structure contains books, chapters, verses (e.g., *Geneza 1:1…*) and a TOC in the file. fileciteturn0file0
|
||||
|
||||
---
|
||||
|
||||
## 0) Architecture at a glance
|
||||
|
||||
- **Input**: Bible in Markdown (`*.md`) → parser → normalized records: *(book, chapter, verse, text, lang=ro)*
|
||||
- **Embedding**: Azure OpenAI **embed-3** (prefer `text-embedding-3-large`, 3072‑D). Batch inputs to cut cost/latency.
|
||||
- **Storage**: Postgres with:
|
||||
- `pgvector` column `embedding vector(3072)`
|
||||
- `tsvector` column for hybrid lexical search (Romanian or English config as needed)
|
||||
- metadata columns for fast filtering (book, chapter, verse, testament, translation, language)
|
||||
- **Indexes**: `ivfflat` over `embedding`, GIN over `tsv` (and btree over metadata)
|
||||
- **Retrieval**:
|
||||
- Dense vector kNN
|
||||
- Hybrid: combine kNN score + BM25/tsvector
|
||||
- Windowed context stitching (neighbor verses) for chat
|
||||
- **Consumers**:
|
||||
- Chat assistant: answer + cite (book:chapter:verse).
|
||||
- Prayer agent: prompt‑compose with retrieved passages & user intents.
|
||||
|
||||
---
|
||||
|
||||
## 1) Prerequisites
|
||||
|
||||
### Postgres + pgvector
|
||||
```bash
|
||||
# Install pgvector (on Ubuntu)
|
||||
sudo apt-get update && sudo apt-get install -y postgresql postgresql-contrib
|
||||
# In psql as superuser:
|
||||
CREATE EXTENSION IF NOT EXISTS vector;
|
||||
```
|
||||
|
||||
### Python deps
|
||||
```bash
|
||||
python -m venv .venv && source .venv/bin/activate
|
||||
pip install psycopg[binary] pgvector pydantic python-dotenv httpx tqdm rapidfuzz
|
||||
```
|
||||
|
||||
> `httpx` for HTTP (async‑capable), `pgvector` adapter, `rapidfuzz` for optional de‑dup or heuristic joins, `tqdm` for progress.
|
||||
|
||||
### Azure OpenAI
|
||||
- Create **Embeddings** deployment for **`text-embedding-3-large`** (or `-small` if cost sensitive). Name it (e.g.) `embeddings`.
|
||||
- Collect:
|
||||
- `AZURE_OPENAI_ENDPOINT=https://<your>.openai.azure.com/`
|
||||
- `AZURE_OPENAI_API_KEY=...`
|
||||
- `AZURE_OPENAI_API_VERSION=2024-05-01-preview` *(or your current stable)*
|
||||
- `AZURE_OPENAI_EMBED_DEPLOYMENT=embeddings` *(your deployment name)*
|
||||
|
||||
Create `.env`:
|
||||
```env
|
||||
DATABASE_URL=postgresql://user:pass@localhost:5432/bible
|
||||
AZURE_OPENAI_ENDPOINT=https://YOUR_RESOURCE.openai.azure.com/
|
||||
AZURE_OPENAI_API_KEY=YOUR_KEY
|
||||
AZURE_OPENAI_API_VERSION=2024-05-01-preview
|
||||
AZURE_OPENAI_EMBED_DEPLOYMENT=embeddings
|
||||
EMBED_DIMS=3072
|
||||
BIBLE_MD_PATH=./Biblia-Fidela-limba-romana.md
|
||||
LANG_CODE=ro
|
||||
TRANSLATION_CODE=FIDELA
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2) Database schema
|
||||
|
||||
```sql
|
||||
-- One-time setup in your database
|
||||
CREATE EXTENSION IF NOT EXISTS vector;
|
||||
|
||||
CREATE TABLE IF NOT EXISTS bible_passages (
|
||||
id BIGSERIAL PRIMARY KEY,
|
||||
testament TEXT NOT NULL, -- 'OT' or 'NT'
|
||||
book TEXT NOT NULL,
|
||||
chapter INT NOT NULL,
|
||||
verse INT NOT NULL,
|
||||
ref TEXT GENERATED ALWAYS AS (book || ' ' || chapter || ':' || verse) STORED,
|
||||
lang TEXT NOT NULL DEFAULT 'ro',
|
||||
translation TEXT NOT NULL DEFAULT 'FIDELA',
|
||||
text_raw TEXT NOT NULL, -- exact verse text
|
||||
text_norm TEXT NOT NULL, -- normalized/cleaned text (embedding input)
|
||||
tsv tsvector,
|
||||
embedding vector(3072), -- 1536 if using embed-3-small
|
||||
created_at TIMESTAMPTZ DEFAULT now(),
|
||||
updated_at TIMESTAMPTZ DEFAULT now()
|
||||
);
|
||||
|
||||
-- Uniqueness by canonical reference within translation/language
|
||||
CREATE UNIQUE INDEX IF NOT EXISTS ux_ref_lang ON bible_passages (translation, lang, book, chapter, verse);
|
||||
|
||||
-- Full-text index (choose config; Romanian available if installed via ISPELL; else use 'simple' or 'english')
|
||||
-- If you have pg_catalog.romanian, use that. Else fallback to 'simple' but keep lexemes.
|
||||
CREATE INDEX IF NOT EXISTS idx_tsv ON bible_passages USING GIN (tsv);
|
||||
|
||||
-- Vector index (choose nlist to match data size; we set after populating table)
|
||||
-- First create a flat index for small data, or IVFFLAT for scale:
|
||||
-- Requires ANALYZE beforehand and SET enable_seqscan=off for kNN plans.
|
||||
```
|
||||
|
||||
After loading, build the IVFFLAT index (the table must be populated first):
|
||||
```sql
|
||||
-- Example: around 31k verses ⇒ nlist ~ 100–200 is reasonable; tune per EXPLAIN ANALYZE
|
||||
CREATE INDEX IF NOT EXISTS idx_vec_ivfflat
|
||||
ON bible_passages USING ivfflat (embedding vector_cosine_ops)
|
||||
WITH (lists = 200);
|
||||
```
|
||||
|
||||
Trigger to keep `updated_at` fresh:
|
||||
```sql
|
||||
CREATE OR REPLACE FUNCTION touch_updated_at() RETURNS TRIGGER AS $$
|
||||
BEGIN NEW.updated_at = now(); RETURN NEW; END; $$ LANGUAGE plpgsql;
|
||||
|
||||
DROP TRIGGER IF EXISTS trg_bible_updated ON bible_passages;
|
||||
CREATE TRIGGER trg_bible_updated BEFORE UPDATE ON bible_passages
|
||||
FOR EACH ROW EXECUTE PROCEDURE touch_updated_at();
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3) Parsing & Chunking strategy (large, high‑quality)
|
||||
|
||||
**Why verse‑level?** It’s the canonical granular unit for Bible QA.
|
||||
**Context‑stitching**: during retrieval, fetch neighbor verses (±N) to maintain narrative continuity.
|
||||
**Normalization** steps (for `text_norm`):
|
||||
- Strip verse numbers and sidenotes if present in raw lines.
|
||||
- Collapse whitespace, unify quotes, remove page headers/footers and TOC artifacts.
|
||||
- Preserve punctuation; avoid stemming before embeddings.
|
||||
- Lowercasing optional (OpenAI embeddings are case-robust).
|
||||
|
||||
**Testament/book detection**: From headings and TOC present in the Markdown; detect Book → Chapter → Verse boundaries via regex.
|
||||
Example regex heuristics (tune to your file):
|
||||
- Book headers: `^(?P<book>[A-ZĂÂÎȘȚ].+?)\s*$` (bounded by known canon order)
|
||||
- Chapter headers: `^Capitolul\s+(?P<ch>\d+)` or `^CApitoLuL\s+(?P<ch>\d+)` (case variations)
|
||||
- Verse lines: `^(?P<verse>\d+)\s+(.+)$`
|
||||
|
||||
> The provided Markdown clearly shows book order (e.g., *Geneza*, *Exodul*, …; NT: *Matei*, *Marcu*, …) and verse lines like “**1** LA început…”. fileciteturn0file0
|
||||
|
||||
---
|
||||
|
||||
## 4) Python ingestion script
|
||||
|
||||
> **Save as** `ingest_bible_pgvector.py`
|
||||
|
||||
```python
|
||||
import os, re, json, math, time, asyncio
|
||||
from typing import List, Dict, Tuple, Iterable
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
import httpx
|
||||
import psycopg
|
||||
from psycopg.rows import dict_row
|
||||
|
||||
load_dotenv()
|
||||
|
||||
AZ_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT", "").rstrip("/")
|
||||
AZ_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
||||
AZ_API_VER = os.getenv("AZURE_OPENAI_API_VERSION", "2024-05-01-preview")
|
||||
AZ_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBED_DEPLOYMENT", "embeddings")
|
||||
EMBED_DIMS = int(os.getenv("EMBED_DIMS", "3072"))
|
||||
DB_URL = os.getenv("DATABASE_URL")
|
||||
BIBLE_MD_PATH = os.getenv("BIBLE_MD_PATH")
|
||||
LANG_CODE = os.getenv("LANG_CODE", "ro")
|
||||
TRANSLATION = os.getenv("TRANSLATION_CODE", "FIDELA")
|
||||
|
||||
assert AZ_ENDPOINT and AZ_API_KEY and DB_URL and BIBLE_MD_PATH, "Missing required env vars"
|
||||
|
||||
EMBED_URL = f"{AZ_ENDPOINT}/openai/deployments/{AZ_DEPLOYMENT}/embeddings?api-version={AZ_API_VER}"
|
||||
|
||||
BOOKS_OT = [
|
||||
"Geneza","Exodul","Leviticul","Numeri","Deuteronom","Iosua","Judecători","Rut",
|
||||
"1 Samuel","2 Samuel","1 Imparati","2 Imparati","1 Cronici","2 Cronici","Ezra","Neemia","Estera",
|
||||
"Iov","Psalmii","Proverbe","Eclesiastul","Cântarea Cântărilor","Isaia","Ieremia","Plângerile",
|
||||
"Ezechiel","Daniel","Osea","Ioel","Amos","Obadia","Iona","Mica","Naum","Habacuc","Țefania","Hagai","Zaharia","Maleahi"
|
||||
]
|
||||
BOOKS_NT = [
|
||||
"Matei","Marcu","Luca","Ioan","Faptele Apostolilor","Romani","1 Corinteni","2 Corinteni",
|
||||
"Galateni","Efeseni","Filipeni","Coloseni","1 Tesaloniceni","2 Tesaloniceni","1 Timotei","2 Timotei",
|
||||
"Titus","Filimon","Evrei","Iacov","1 Petru","2 Petru","1 Ioan","2 Ioan","3 Ioan","Iuda","Revelaţia"
|
||||
]
|
||||
|
||||
BOOK_CANON = {b:("OT" if b in BOOKS_OT else "NT") for b in BOOKS_OT + BOOKS_NT}
|
||||
|
||||
@dataclass
|
||||
class Verse:
|
||||
testament: str
|
||||
book: str
|
||||
chapter: int
|
||||
verse: int
|
||||
text_raw: str
|
||||
text_norm: str
|
||||
|
||||
def normalize_text(s: str) -> str:
|
||||
s = re.sub(r"\s+", " ", s.strip())
|
||||
s = s.replace(" ", " ")
|
||||
return s
|
||||
|
||||
BOOK_RE = re.compile(r"^(?P<book>[A-ZĂÂÎȘȚ][^\n]+?)\s*$")
|
||||
CH_RE = re.compile(r"^(?i:Capitolul|CApitoLuL)\s+(?P<ch>\d+)\b")
|
||||
VERSE_RE = re.compile(r"^(?P<v>\d+)\s+(?P<body>.+)$")
|
||||
|
||||
def parse_bible_md(md_text: str):
|
||||
cur_book, cur_ch = None, None
|
||||
testament = None
|
||||
for line in md_text.splitlines():
|
||||
line = line.rstrip()
|
||||
|
||||
# Book detection
|
||||
m_book = BOOK_RE.match(line)
|
||||
if m_book:
|
||||
bname = m_book.group("book").strip()
|
||||
if bname in BOOK_CANON:
|
||||
cur_book = bname
|
||||
testament = BOOK_CANON[bname]
|
||||
cur_ch = None
|
||||
continue
|
||||
|
||||
m_ch = CH_RE.match(line)
|
||||
if m_ch and cur_book:
|
||||
cur_ch = int(m_ch.group("ch"))
|
||||
continue
|
||||
|
||||
m_v = VERSE_RE.match(line)
|
||||
if m_v and cur_book and cur_ch:
|
||||
vnum = int(m_v.group("v"))
|
||||
body = m_v.group("body").strip()
|
||||
raw = body
|
||||
norm = normalize_text(body)
|
||||
yield {
|
||||
"testament": testament, "book": cur_book, "chapter": cur_ch, "verse": vnum,
|
||||
"text_raw": raw, "text_norm": norm
|
||||
}
|
||||
|
||||
async def embed_batch(client, inputs):
|
||||
payload = {"input": inputs}
|
||||
headers = {"api-key": AZ_API_KEY, "Content-Type": "application/json"}
|
||||
for attempt in range(6):
|
||||
try:
|
||||
r = await client.post(EMBED_URL, headers=headers, json=payload, timeout=60)
|
||||
if r.status_code == 200:
|
||||
data = r.json()
|
||||
ordered = sorted(data["data"], key=lambda x: x["index"])
|
||||
return [d["embedding"] for d in ordered]
|
||||
elif r.status_code in (429, 500, 503):
|
||||
backoff = 2 ** attempt + (0.1 * attempt)
|
||||
await asyncio.sleep(backoff)
|
||||
else:
|
||||
raise RuntimeError(f"Embedding error {r.status_code}: {r.text}")
|
||||
except Exception:
|
||||
backoff = 2 ** attempt + (0.1 * attempt)
|
||||
await asyncio.sleep(backoff)
|
||||
raise RuntimeError("Failed to embed after retries")
|
||||
|
||||
UPSERT_SQL = """
|
||||
INSERT INTO bible_passages (testament, book, chapter, verse, lang, translation, text_raw, text_norm, tsv, embedding)
|
||||
VALUES (%(testament)s, %(book)s, %(chapter)s, %(verse)s, %(lang)s, %(translation)s, %(text_raw)s, %(text_norm)s,
|
||||
to_tsvector(COALESCE(%(ts_lang)s,'simple')::regconfig, %(text_norm)s), %(embedding)s)
|
||||
ON CONFLICT (translation, lang, book, chapter, verse) DO UPDATE
|
||||
SET text_raw=EXCLUDED.text_raw,
|
||||
text_norm=EXCLUDED.text_norm,
|
||||
tsv=EXCLUDED.tsv,
|
||||
embedding=EXCLUDED.embedding,
|
||||
updated_at=now();
|
||||
"""
|
||||
|
||||
async def main():
|
||||
md_text = Path(BIBLE_MD_PATH).read_text(encoding="utf-8", errors="ignore")
|
||||
verses = list(parse_bible_md(md_text))
|
||||
print(f"Parsed verses: {len(verses)}")
|
||||
|
||||
batch_size = 128
|
||||
async with httpx.AsyncClient() as client, psycopg.connect(DB_URL, autocommit=False) as conn:
|
||||
with conn.cursor() as cur:
|
||||
for i in range(0, len(verses), batch_size):
|
||||
batch = verses[i:i+batch_size]
|
||||
inputs = [v["text_norm"] for v in batch]
|
||||
embs = await embed_batch(client, inputs)
|
||||
rows = []
|
||||
for v, e in zip(batch, embs):
|
||||
rows.append({
|
||||
**v,
|
||||
"lang": os.getenv("LANG_CODE","ro"),
|
||||
"translation": os.getenv("TRANSLATION_CODE","FIDELA"),
|
||||
"ts_lang": "romanian",
|
||||
"embedding": e
|
||||
})
|
||||
cur.executemany(UPSERT_SQL, rows)
|
||||
conn.commit()
|
||||
print(f"Upserted {len(rows)} … {i+len(rows)}/{len(verses)}")
|
||||
print("Done. Build IVFFLAT index after ANALYZE.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
**Notes**
|
||||
- If `romanian` text search config is unavailable, set `ts_lang='simple'`.
|
||||
- For `embed-3-small`, set `EMBED_DIMS=1536` and change column type to `vector(1536)`.
|
||||
|
||||
---
|
||||
|
||||
## 5) Post‑ingestion steps
|
||||
|
||||
```sql
|
||||
VACUUM ANALYZE bible_passages;
|
||||
CREATE INDEX IF NOT EXISTS idx_vec_ivfflat
|
||||
ON bible_passages USING ivfflat (embedding vector_cosine_ops)
|
||||
WITH (lists = 200);
|
||||
CREATE INDEX IF NOT EXISTS idx_book_ch ON bible_passages (book, chapter);
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 6) Retrieval patterns
|
||||
|
||||
### A) Pure vector kNN (cosine)
|
||||
```sql
|
||||
SELECT ref, book, chapter, verse, text_raw,
|
||||
1 - (embedding <=> $1) AS cosine_sim
|
||||
FROM bible_passages
|
||||
ORDER BY embedding <=> $1
|
||||
LIMIT $2;
|
||||
```
|
||||
|
||||
### B) Hybrid lexical + vector (weighted)
|
||||
```sql
|
||||
WITH v AS (
|
||||
SELECT id, 1 - (embedding <=> $1) AS vsim
|
||||
FROM bible_passages
|
||||
ORDER BY embedding <=> $1
|
||||
LIMIT 100
|
||||
),
|
||||
l AS (
|
||||
SELECT id, ts_rank(tsv, $2) AS lrank
|
||||
FROM bible_passages
|
||||
WHERE tsv @@ $2
|
||||
)
|
||||
SELECT bp.ref, bp.book, bp.chapter, bp.verse, bp.text_raw,
|
||||
COALESCE(v.vsim, 0) * 0.7 + COALESCE(l.lrank, 0) * 0.3 AS score
|
||||
FROM bible_passages bp
|
||||
LEFT JOIN v ON v.id = bp.id
|
||||
LEFT JOIN l ON l.id = bp.id
|
||||
ORDER BY score DESC
|
||||
LIMIT 20;
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 7) Chat & Prayer agent tips
|
||||
|
||||
- **Answer grounding**: always cite `ref` (e.g., *Ioan 3:16*).
|
||||
- **Multilingual output**: keep quotes in Romanian; explain in the user’s language.
|
||||
- **Prayer agent**: constrain tone & doctrine; inject retrieved verses as anchors.
|
||||
|
||||
---
|
||||
|
||||
## 8) Ops
|
||||
|
||||
- Idempotent `UPSERT`.
|
||||
- Backoff on 429/5xx.
|
||||
- Consider keeping both `embed-3-large` and `-small` columns when migrating.
|
||||
|
||||
---
|
||||
|
||||
## 9) License & attribution
|
||||
|
||||
This guide references the structure of *Biblia Fidela* Markdown for ingestion demonstration. fileciteturn0file0
|
||||
Reference in New Issue
Block a user