Implement Azure OpenAI vector embeddings for Romanian Bible
- Add pgvector support with bible_passages table for vector search - Create Python ingestion script for Azure OpenAI embed-3 embeddings - Implement hybrid search combining vector similarity and full-text search - Update AI chat to use vector search with Azure OpenAI gpt-4o - Add floating chat component with Material UI design - Import complete Romanian Bible (FIDELA) with 30K+ verses - Add vector search library for semantic Bible search - Create multi-language implementation plan for future expansion 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
231
scripts/ingest_bible_pgvector.py
Normal file
231
scripts/ingest_bible_pgvector.py
Normal file
@@ -0,0 +1,231 @@
|
||||
import os, re, json, math, time, asyncio
|
||||
from typing import List, Dict, Tuple, Iterable
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
import httpx
|
||||
import psycopg
|
||||
from psycopg.rows import dict_row
|
||||
|
||||
load_dotenv()
|
||||
|
||||
AZ_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT", "").rstrip("/")
|
||||
AZ_API_KEY = os.getenv("AZURE_OPENAI_KEY")
|
||||
AZ_API_VER = os.getenv("AZURE_OPENAI_API_VERSION", "2024-05-01-preview")
|
||||
AZ_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBED_DEPLOYMENT", "embed-3")
|
||||
EMBED_DIMS = int(os.getenv("EMBED_DIMS", "3072"))
|
||||
DB_URL = os.getenv("DATABASE_URL")
|
||||
BIBLE_MD_PATH = os.getenv("BIBLE_MD_PATH")
|
||||
LANG_CODE = os.getenv("LANG_CODE", "ro")
|
||||
TRANSLATION = os.getenv("TRANSLATION_CODE", "FIDELA")
|
||||
|
||||
assert AZ_ENDPOINT and AZ_API_KEY and DB_URL and BIBLE_MD_PATH, "Missing required env vars"
|
||||
|
||||
EMBED_URL = f"{AZ_ENDPOINT}/openai/deployments/{AZ_DEPLOYMENT}/embeddings?api-version={AZ_API_VER}"
|
||||
|
||||
BOOKS_OT = [
|
||||
"Geneza","Exodul","Leviticul","Numeri","Deuteronom","Iosua","Judecători","Rut",
|
||||
"1 Samuel","2 Samuel","1 Imparati","2 Imparati","1 Cronici","2 Cronici","Ezra","Neemia","Estera",
|
||||
"Iov","Psalmii","Proverbe","Eclesiastul","Cântarea Cântărilor","Isaia","Ieremia","Plângerile",
|
||||
"Ezechiel","Daniel","Osea","Ioel","Amos","Obadia","Iona","Mica","Naum","Habacuc","Țefania","Hagai","Zaharia","Maleahi"
|
||||
]
|
||||
BOOKS_NT = [
|
||||
"Matei","Marcu","Luca","Ioan","Faptele Apostolilor","Romani","1 Corinteni","2 Corinteni",
|
||||
"Galateni","Efeseni","Filipeni","Coloseni","1 Tesaloniceni","2 Tesaloniceni","1 Timotei","2 Timotei",
|
||||
"Titus","Filimon","Evrei","Iacov","1 Petru","2 Petru","1 Ioan","2 Ioan","3 Ioan","Iuda","Revelaţia"
|
||||
]
|
||||
|
||||
BOOK_CANON = {b:("OT" if b in BOOKS_OT else "NT") for b in BOOKS_OT + BOOKS_NT}
|
||||
|
||||
@dataclass
|
||||
class Verse:
|
||||
testament: str
|
||||
book: str
|
||||
chapter: int
|
||||
verse: int
|
||||
text_raw: str
|
||||
text_norm: str
|
||||
|
||||
def normalize_text(s: str) -> str:
|
||||
s = re.sub(r"\s+", " ", s.strip())
|
||||
s = s.replace(" ", " ")
|
||||
return s
|
||||
|
||||
BOOK_RE = re.compile(r"^(?P<book>[A-ZĂÂÎȘȚ][^\n]+?)\s*$")
|
||||
CH_RE = re.compile(r"^(?i:Capitolul|CApitoLuL)\s+(?P<ch>\d+)\b")
|
||||
VERSE_RE = re.compile(r"^(?P<v>\d+)\s+(?P<body>.+)$")
|
||||
|
||||
def parse_bible_md(md_text: str):
|
||||
cur_book, cur_ch = None, None
|
||||
testament = None
|
||||
is_in_bible_content = False
|
||||
|
||||
for line in md_text.splitlines():
|
||||
line = line.rstrip()
|
||||
|
||||
# Start processing after "VECHIUL TESTAMENT" or when we find book markers
|
||||
if line == 'VECHIUL TESTAMENT' or line == 'TESTAMENT' or '…' in line:
|
||||
is_in_bible_content = True
|
||||
|
||||
if not is_in_bible_content:
|
||||
continue
|
||||
|
||||
# Book detection: … BookName …
|
||||
book_match = re.match(r'^…\s*(.+?)\s*…$', line)
|
||||
if book_match:
|
||||
bname = book_match.group(1).strip()
|
||||
if bname in BOOK_CANON:
|
||||
cur_book = bname
|
||||
testament = BOOK_CANON[bname]
|
||||
cur_ch = None
|
||||
print(f"Found book: {bname}")
|
||||
continue
|
||||
|
||||
# Chapter detection: Capitolul X or CApitoLuL X
|
||||
m_ch = CH_RE.match(line)
|
||||
if m_ch and cur_book:
|
||||
cur_ch = int(m_ch.group("ch"))
|
||||
print(f" Chapter {cur_ch}")
|
||||
continue
|
||||
|
||||
# Verse detection: starts with number
|
||||
m_v = VERSE_RE.match(line)
|
||||
if m_v and cur_book and cur_ch:
|
||||
vnum = int(m_v.group("v"))
|
||||
body = m_v.group("body").strip()
|
||||
|
||||
# Remove paragraph markers
|
||||
body = re.sub(r'^¶\s*', '', body)
|
||||
|
||||
raw = body
|
||||
norm = normalize_text(body)
|
||||
yield {
|
||||
"testament": testament, "book": cur_book, "chapter": cur_ch, "verse": vnum,
|
||||
"text_raw": raw, "text_norm": norm
|
||||
}
|
||||
|
||||
async def embed_batch(client, inputs):
|
||||
payload = {"input": inputs}
|
||||
headers = {"api-key": AZ_API_KEY, "Content-Type": "application/json"}
|
||||
for attempt in range(6):
|
||||
try:
|
||||
r = await client.post(EMBED_URL, headers=headers, json=payload, timeout=60)
|
||||
if r.status_code == 200:
|
||||
data = r.json()
|
||||
ordered = sorted(data["data"], key=lambda x: x["index"])
|
||||
return [d["embedding"] for d in ordered]
|
||||
elif r.status_code in (429, 500, 503):
|
||||
backoff = 2 ** attempt + (0.1 * attempt)
|
||||
print(f"Rate limited, waiting {backoff:.1f}s...")
|
||||
await asyncio.sleep(backoff)
|
||||
else:
|
||||
raise RuntimeError(f"Embedding error {r.status_code}: {r.text}")
|
||||
except Exception as e:
|
||||
backoff = 2 ** attempt + (0.1 * attempt)
|
||||
print(f"Error on attempt {attempt + 1}: {e}, waiting {backoff:.1f}s...")
|
||||
await asyncio.sleep(backoff)
|
||||
raise RuntimeError("Failed to embed after retries")
|
||||
|
||||
# First, we need to create the table with proper SQL
|
||||
CREATE_TABLE_SQL = """
|
||||
CREATE TABLE IF NOT EXISTS bible_passages (
|
||||
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
||||
testament TEXT NOT NULL,
|
||||
book TEXT NOT NULL,
|
||||
chapter INT NOT NULL,
|
||||
verse INT NOT NULL,
|
||||
ref TEXT GENERATED ALWAYS AS (book || ' ' || chapter || ':' || verse) STORED,
|
||||
lang TEXT NOT NULL DEFAULT 'ro',
|
||||
translation TEXT NOT NULL DEFAULT 'FIDELA',
|
||||
text_raw TEXT NOT NULL,
|
||||
text_norm TEXT NOT NULL,
|
||||
tsv tsvector,
|
||||
embedding vector(1536),
|
||||
created_at TIMESTAMPTZ DEFAULT now(),
|
||||
updated_at TIMESTAMPTZ DEFAULT now()
|
||||
);
|
||||
"""
|
||||
|
||||
CREATE_INDEXES_SQL = """
|
||||
-- Uniqueness by canonical reference within translation/language
|
||||
CREATE UNIQUE INDEX IF NOT EXISTS ux_ref_lang ON bible_passages (translation, lang, book, chapter, verse);
|
||||
|
||||
-- Full-text index
|
||||
CREATE INDEX IF NOT EXISTS idx_tsv ON bible_passages USING GIN (tsv);
|
||||
|
||||
-- Other indexes
|
||||
CREATE INDEX IF NOT EXISTS idx_book_ch ON bible_passages (book, chapter);
|
||||
CREATE INDEX IF NOT EXISTS idx_testament ON bible_passages (testament);
|
||||
"""
|
||||
|
||||
UPSERT_SQL = """
|
||||
INSERT INTO bible_passages (testament, book, chapter, verse, lang, translation, text_raw, text_norm, tsv, embedding)
|
||||
VALUES (%(testament)s, %(book)s, %(chapter)s, %(verse)s, %(lang)s, %(translation)s, %(text_raw)s, %(text_norm)s,
|
||||
to_tsvector(COALESCE(%(ts_lang)s,'simple')::regconfig, %(text_norm)s), %(embedding)s)
|
||||
ON CONFLICT (translation, lang, book, chapter, verse) DO UPDATE
|
||||
SET text_raw=EXCLUDED.text_raw,
|
||||
text_norm=EXCLUDED.text_norm,
|
||||
tsv=EXCLUDED.tsv,
|
||||
embedding=EXCLUDED.embedding,
|
||||
updated_at=now();
|
||||
"""
|
||||
|
||||
async def main():
|
||||
print("Starting Bible embedding ingestion...")
|
||||
|
||||
md_text = Path(BIBLE_MD_PATH).read_text(encoding="utf-8", errors="ignore")
|
||||
verses = list(parse_bible_md(md_text))
|
||||
print(f"Parsed verses: {len(verses)}")
|
||||
|
||||
batch_size = 128
|
||||
|
||||
# First create the table structure
|
||||
with psycopg.connect(DB_URL) as conn:
|
||||
with conn.cursor() as cur:
|
||||
print("Creating bible_passages table...")
|
||||
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
|
||||
cur.execute(CREATE_TABLE_SQL)
|
||||
cur.execute(CREATE_INDEXES_SQL)
|
||||
conn.commit()
|
||||
print("Table created successfully")
|
||||
|
||||
# Now process embeddings
|
||||
async with httpx.AsyncClient() as client:
|
||||
with psycopg.connect(DB_URL, autocommit=False) as conn:
|
||||
with conn.cursor() as cur:
|
||||
for i in range(0, len(verses), batch_size):
|
||||
batch = verses[i:i+batch_size]
|
||||
inputs = [v["text_norm"] for v in batch]
|
||||
|
||||
print(f"Generating embeddings for batch {i//batch_size + 1}/{(len(verses) + batch_size - 1)//batch_size}")
|
||||
embs = await embed_batch(client, inputs)
|
||||
|
||||
rows = []
|
||||
for v, e in zip(batch, embs):
|
||||
rows.append({
|
||||
**v,
|
||||
"lang": LANG_CODE,
|
||||
"translation": TRANSLATION,
|
||||
"ts_lang": "romanian",
|
||||
"embedding": e
|
||||
})
|
||||
|
||||
cur.executemany(UPSERT_SQL, rows)
|
||||
conn.commit()
|
||||
print(f"Upserted {len(rows)} verses... {i+len(rows)}/{len(verses)}")
|
||||
|
||||
# Create IVFFLAT index after data is loaded
|
||||
print("Creating IVFFLAT index...")
|
||||
with psycopg.connect(DB_URL, autocommit=True) as conn:
|
||||
with conn.cursor() as cur:
|
||||
cur.execute("VACUUM ANALYZE bible_passages;")
|
||||
cur.execute("""
|
||||
CREATE INDEX IF NOT EXISTS idx_vec_ivfflat
|
||||
ON bible_passages USING ivfflat (embedding vector_cosine_ops)
|
||||
WITH (lists = 200);
|
||||
""")
|
||||
|
||||
print("✅ Bible embedding ingestion completed successfully!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
Reference in New Issue
Block a user