# AI-Powered Smart Suggestions - Implementation Plan ## 📋 Overview Implement AI-powered features that provide intelligent suggestions, thematic discovery, semantic search, and personalized recommendations to enhance Bible study and deepen Scripture understanding. **Status:** Planning Phase **Priority:** 🔵 Future **Estimated Time:** 4-6 weeks (160-240 hours) **Target Completion:** TBD --- ## 🎯 Goals & Objectives ### Primary Goals 1. Provide AI-powered verse recommendations 2. Enable semantic (meaning-based) search 3. Generate study questions automatically 4. Discover thematic connections 5. Personalize user experience with ML ### User Value Proposition - **For students**: Discover related content automatically - **For scholars**: Find thematic patterns - **For personal study**: Get personalized recommendations - **For teachers**: Generate discussion questions - **For explorers**: Uncover hidden connections --- ## ✨ Feature Specifications ### 1. AI Architecture ```typescript interface AIConfig { // Providers provider: 'openai' | 'azure' | 'ollama' | 'anthropic' model: string // gpt-4, gpt-3.5-turbo, claude-3, llama2, etc. apiKey?: string endpoint?: string // Features enableSuggestions: boolean enableSemanticSearch: boolean enableQuestionGeneration: boolean enableSummarization: boolean enableThematicAnalysis: boolean // Behavior cacheResponses: boolean maxTokens: number temperature: number // 0-1, creativity enableRAG: boolean // Retrieval Augmented Generation } interface AIService { // Core methods generateSuggestions(verse: VerseReference): Promise semanticSearch(query: string): Promise generateQuestions(passage: string): Promise summarizeChapter(book: string, chapter: number): Promise analyzeThemes(verses: string[]): Promise explainVerse(verse: string): Promise } ``` ### 2. Smart Verse Suggestions ```typescript interface Suggestion { id: string type: 'related' | 'thematic' | 'contextual' | 'application' | 'cross-ref' verse: VerseReference reason: string // Why this was suggested relevanceScore: number // 0-1 metadata?: { theme?: string category?: string connection?: string } } const SmartSuggestions: React.FC<{ currentVerse: VerseReference }> = ({ currentVerse }) => { const [suggestions, setSuggestions] = useState([]) const [loading, setLoading] = useState(false) useEffect(() => { loadSuggestions() }, [currentVerse]) const loadSuggestions = async () => { setLoading(true) try { const response = await fetch('/api/ai/suggestions', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ verse: currentVerse, limit: 10 }) }) const data = await response.json() setSuggestions(data.suggestions) } catch (error) { console.error('Failed to load suggestions:', error) } finally { setLoading(false) } } return ( } action={ } /> {loading ? ( ) : suggestions.length === 0 ? ( No suggestions available for this verse. ) : ( {suggestions.map(suggestion => ( {getIconForType(suggestion.type)} 0.7 ? 'success' : 'default'} /> ))} )} ) } ``` ### 3. Semantic Search with Vector Embeddings ```typescript // Generate embeddings for Bible verses const generateEmbedding = async (text: string): Promise => { const response = await fetch('/api/ai/embed', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ text }) }) const data = await response.json() return data.embedding } // Semantic search implementation const semanticSearch = async (query: string): Promise => { // Generate embedding for query const queryEmbedding = await generateEmbedding(query) // Find similar verses using vector similarity const results = await prisma.$queryRaw` SELECT v."id", v."book", v."chapter", v."verseNum", v."text", 1 - (v."embedding" <=> ${queryEmbedding}::vector) AS similarity FROM "BibleVerse" v WHERE v."embedding" IS NOT NULL ORDER BY v."embedding" <=> ${queryEmbedding}::vector LIMIT 20 ` return results } const SemanticSearch: React.FC = () => { const [query, setQuery] = useState('') const [results, setResults] = useState([]) const [searching, setSearching] = useState(false) const handleSearch = async () => { if (!query.trim()) return setSearching(true) try { const response = await fetch('/api/ai/search/semantic', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ query }) }) const data = await response.json() setResults(data.results) } catch (error) { console.error('Semantic search failed:', error) } finally { setSearching(false) } } return ( Semantic Search Search by meaning, not just keywords. Ask questions like "verses about hope" or "God's love for humanity" setQuery(e.target.value)} onKeyPress={(e) => e.key === 'Enter' && handleSearch()} /> {/* Results */} {results.map(result => ( {result.book} {result.chapter}:{result.verseNum} {result.text} 0.8 ? 'success' : 'default'} /> ))} ) } ``` ### 4. AI Study Question Generator ```typescript interface Question { id: string type: 'comprehension' | 'application' | 'reflection' | 'analysis' | 'discussion' question: string difficulty: 'easy' | 'medium' | 'hard' suggestedAnswer?: string } const generateStudyQuestions = async ( passage: string, count: number = 5 ): Promise => { const prompt = ` Generate ${count} thoughtful study questions for the following Bible passage. Include a mix of comprehension, application, and reflection questions. Passage: ${passage} Return as JSON array with format: [ { "type": "comprehension|application|reflection|analysis|discussion", "question": "the question", "difficulty": "easy|medium|hard" } ] ` const response = await fetch('/api/ai/generate', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ prompt, temperature: 0.7, maxTokens: 1000 }) }) const data = await response.json() return JSON.parse(data.response) } const StudyQuestionGenerator: React.FC<{ passage: string }> = ({ passage }) => { const [questions, setQuestions] = useState([]) const [generating, setGenerating] = useState(false) const handleGenerate = async () => { setGenerating(true) try { const generated = await generateStudyQuestions(passage) setQuestions(generated) } catch (error) { console.error('Failed to generate questions:', error) } finally { setGenerating(false) } } return ( Study Questions {questions.length > 0 && ( {questions.map((question, index) => ( {index + 1}. {question.question} ))} )} ) } ``` ### 5. Thematic Analysis ```typescript interface Theme { name: string description: string verses: VerseReference[] relevance: number // 0-1 keywords: string[] } const analyzeThemes = async (verses: string[]): Promise => { const prompt = ` Analyze the following Bible verses and identify the main themes, topics, and theological concepts. For each theme, provide: - Name - Description - Keywords - Relevance score (0-1) Verses: ${verses.join('\n\n')} Return as JSON array. ` const response = await fetch('/api/ai/analyze/themes', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ prompt, verses }) }) const data = await response.json() return data.themes } const ThematicAnalysis: React.FC<{ book: string chapter: number }> = ({ book, chapter }) => { const [themes, setThemes] = useState([]) const [analyzing, setAnalyzing] = useState(false) useEffect(() => { performAnalysis() }, [book, chapter]) const performAnalysis = async () => { setAnalyzing(true) try { // Fetch chapter verses const verses = await fetchChapterVerses(book, chapter) // Analyze themes const themes = await analyzeThemes(verses.map(v => v.text)) setThemes(themes) } catch (error) { console.error('Theme analysis failed:', error) } finally { setAnalyzing(false) } } return ( Thematic Analysis {analyzing ? ( ) : ( {themes.map((theme, index) => ( {theme.name} {theme.description} {theme.keywords.map(keyword => ( ))} Relevance: {Math.round(theme.relevance * 100)}% ))} )} ) } ``` ### 6. RAG (Retrieval Augmented Generation) ```typescript // RAG implementation for contextual AI responses const ragQuery = async (question: string, context: string[]): Promise => { // Step 1: Find relevant verses using semantic search const relevantVerses = await semanticSearch(question) // Step 2: Build context from retrieved verses const contextText = relevantVerses .slice(0, 5) .map(v => `${v.book} ${v.chapter}:${v.verseNum} - ${v.text}`) .join('\n\n') // Step 3: Generate response with context const prompt = ` You are a Bible study assistant. Answer the following question using ONLY the provided Scripture context. Be accurate and cite specific verses. Context: ${contextText} Question: ${question} Answer: ` const response = await fetch('/api/ai/generate', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ prompt, temperature: 0.3, // Lower temperature for accuracy maxTokens: 500 }) }) const data = await response.json() return data.response } const RAGChatbot: React.FC = () => { const [messages, setMessages] = useState>([]) const [input, setInput] = useState('') const [thinking, setThinking] = useState(false) const handleSend = async () => { if (!input.trim()) return const userMessage = { role: 'user' as const, content: input } setMessages(prev => [...prev, userMessage]) setInput('') setThinking(true) try { const answer = await ragQuery(input, []) setMessages(prev => [...prev, { role: 'assistant', content: answer }]) } catch (error) { console.error('RAG query failed:', error) } finally { setThinking(false) } } return ( Ask the Bible {messages.map((msg, index) => ( {msg.content} ))} {thinking && ( Thinking... )} setInput(e.target.value)} onKeyPress={(e) => e.key === 'Enter' && handleSend()} /> ) } ``` --- ## 🗄️ Database Schema ```prisma model BibleVerse { // ... existing fields embedding Float[]? @db.Vector(1536) // For semantic search embeddedAt DateTime? } model AISuggestion { id String @id @default(cuid()) userId String user User @relation(fields: [userId], references: [id]) sourceVerse String // book:chapter:verse targetVerse String type String // related, thematic, contextual, etc. reason String relevance Float clicked Boolean @default(false) helpful Boolean? createdAt DateTime @default(now()) @@index([userId, sourceVerse]) } model AICache { id String @id @default(cuid()) query String @unique response Json provider String model String tokens Int createdAt DateTime @default(now()) expiresAt DateTime @@index([query]) @@index([expiresAt]) } ``` --- ## 📅 Implementation Timeline ### Phase 1: Foundation (Week 1-2) - [ ] Set up AI provider integration - [ ] Implement vector embeddings - [ ] Build semantic search - [ ] Create caching layer ### Phase 2: Features (Week 3-4) - [ ] Smart suggestions engine - [ ] Question generator - [ ] Thematic analysis - [ ] RAG chatbot ### Phase 3: Optimization (Week 5-6) - [ ] Performance tuning - [ ] Cost optimization - [ ] A/B testing - [ ] User feedback loop --- ## 💰 Cost Considerations ### OpenAI Pricing (estimated) - GPT-4: $0.03/1K input tokens, $0.06/1K output - GPT-3.5-turbo: $0.0005/1K tokens - Embeddings: $0.0001/1K tokens ### Monthly estimates for 10,000 active users: - Embeddings (one-time): ~$50 - Suggestions (10/user/month): ~$150 - Semantic search (50/user/month): ~$25 - Questions (5/user/month): ~$200 - **Total**: ~$425/month ### Cost Optimization: - Cache all responses (reduce by 60%) - Use GPT-3.5 where possible - Rate limiting per user - Consider self-hosted Ollama for basic tasks --- **Document Version:** 1.0 **Last Updated:** 2025-10-13 **Status:** Ready for Implementation