Add complete bookmarks page with navigation functionality: Features: - Dedicated /bookmarks page for viewing all saved bookmarks - Support for both chapter and verse bookmarks in unified view - Statistics dashboard showing total, chapter, and verse bookmark counts - Tabbed filtering (All, Chapters, Verses) for easy organization - Direct navigation to Bible reading page with URL parameters - Delete functionality for individual bookmarks - Empty state with call-to-action to start reading Navigation Integration: - Add Bookmarks to main navigation menu (authenticated users only) - Add Bookmarks to user profile dropdown menu - Dynamic navigation based on authentication state Bible Page Enhancements: - URL parameter support for bookmark navigation (book, chapter, verse) - Verse highlighting when navigating from bookmarks - Auto-clear highlight after 3 seconds for better UX API Endpoints: - /api/bookmarks/all - Unified endpoint for all user bookmarks - Returns transformed data optimized for frontend consumption Multilingual Support: - Full Romanian and English translations - Consistent messaging across all bookmark interfaces 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
170 lines
7.0 KiB
Python
170 lines
7.0 KiB
Python
import os, json, re, asyncio
|
|
from pathlib import Path
|
|
from typing import List, Dict
|
|
from dotenv import load_dotenv
|
|
import httpx
|
|
import psycopg
|
|
|
|
load_dotenv()
|
|
|
|
AZ_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT", "").rstrip("/")
|
|
AZ_API_KEY = os.getenv("AZURE_OPENAI_KEY")
|
|
AZ_API_VER = os.getenv("AZURE_OPENAI_API_VERSION", "2024-05-01-preview")
|
|
AZ_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBED_DEPLOYMENT", "embed-3")
|
|
EMBED_DIMS = int(os.getenv("EMBED_DIMS", "3072"))
|
|
DB_URL = os.getenv("DATABASE_URL")
|
|
VECTOR_SCHEMA = os.getenv("VECTOR_SCHEMA", "ai_bible")
|
|
LANG_CODE = os.getenv("LANG_CODE", "en")
|
|
TRANSLATION = os.getenv("TRANSLATION_CODE", "WEB")
|
|
JSON_DIR = os.getenv("JSON_DIR", f"data/en_bible/{TRANSLATION}")
|
|
|
|
assert AZ_ENDPOINT and AZ_API_KEY and DB_URL and JSON_DIR, "Missing required env vars"
|
|
|
|
EMBED_URL = f"{AZ_ENDPOINT}/openai/deployments/{AZ_DEPLOYMENT}/embeddings?api-version={AZ_API_VER}"
|
|
|
|
def safe_ident(s: str) -> str:
|
|
return re.sub(r"[^a-z0-9_]+", "_", s.lower()).strip("_")
|
|
|
|
TABLE_BASENAME = f"bv_{safe_ident(LANG_CODE)}_{safe_ident(TRANSLATION)}"
|
|
TABLE_FQN = f'"{VECTOR_SCHEMA}"."{TABLE_BASENAME}"'
|
|
|
|
def create_table_sql() -> str:
|
|
return f"""
|
|
CREATE SCHEMA IF NOT EXISTS "{VECTOR_SCHEMA}";
|
|
CREATE TABLE IF NOT EXISTS {TABLE_FQN} (
|
|
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
|
testament TEXT NOT NULL,
|
|
book TEXT NOT NULL,
|
|
chapter INT NOT NULL,
|
|
verse INT NOT NULL,
|
|
ref TEXT GENERATED ALWAYS AS (book || ' ' || chapter || ':' || verse) STORED,
|
|
text_raw TEXT NOT NULL,
|
|
text_norm TEXT NOT NULL,
|
|
tsv tsvector,
|
|
embedding vector({EMBED_DIMS}),
|
|
created_at TIMESTAMPTZ DEFAULT now(),
|
|
updated_at TIMESTAMPTZ DEFAULT now()
|
|
);
|
|
"""
|
|
|
|
def create_indexes_sql() -> str:
|
|
return f"""
|
|
CREATE UNIQUE INDEX IF NOT EXISTS ux_ref_{TABLE_BASENAME} ON {TABLE_FQN} (book, chapter, verse);
|
|
CREATE INDEX IF NOT EXISTS idx_tsv_{TABLE_BASENAME} ON {TABLE_FQN} USING GIN (tsv);
|
|
CREATE INDEX IF NOT EXISTS idx_book_ch_{TABLE_BASENAME} ON {TABLE_FQN} (book, chapter);
|
|
CREATE INDEX IF NOT EXISTS idx_testament_{TABLE_BASENAME} ON {TABLE_FQN} (testament);
|
|
"""
|
|
|
|
def upsert_sql() -> str:
|
|
return f"""
|
|
INSERT INTO {TABLE_FQN} (testament, book, chapter, verse, text_raw, text_norm, tsv, embedding)
|
|
VALUES (%(testament)s, %(book)s, %(chapter)s, %(verse)s, %(text_raw)s, %(text_norm)s,
|
|
to_tsvector(COALESCE(%(ts_lang)s,'simple')::regconfig, %(text_norm)s), %(embedding)s)
|
|
ON CONFLICT (book, chapter, verse) DO UPDATE
|
|
SET text_raw=EXCLUDED.text_raw,
|
|
text_norm=EXCLUDED.text_norm,
|
|
tsv=EXCLUDED.tsv,
|
|
embedding=EXCLUDED.embedding,
|
|
updated_at=now();
|
|
"""
|
|
|
|
def normalize(s: str) -> str:
|
|
s = re.sub(r"\s+", " ", s.strip())
|
|
return s
|
|
|
|
async def embed_batch(client: httpx.AsyncClient, inputs: List[str]) -> List[List[float]]:
|
|
payload = {"input": inputs}
|
|
headers = {"api-key": AZ_API_KEY, "Content-Type": "application/json"}
|
|
for attempt in range(6):
|
|
try:
|
|
r = await client.post(EMBED_URL, headers=headers, json=payload, timeout=60)
|
|
if r.status_code == 200:
|
|
data = r.json()
|
|
ordered = sorted(data["data"], key=lambda x: x["index"])
|
|
return [d["embedding"] for d in ordered]
|
|
elif r.status_code in (429, 500, 502, 503):
|
|
backoff = 2 ** attempt + (0.25 * attempt)
|
|
print(f"Rate/Server limited ({r.status_code}), waiting {backoff:.1f}s...")
|
|
await asyncio.sleep(backoff)
|
|
else:
|
|
raise RuntimeError(f"Embedding error {r.status_code}: {r.text}")
|
|
except Exception as e:
|
|
backoff = 2 ** attempt + (0.25 * attempt)
|
|
print(f"Error on attempt {attempt + 1}: {e}, waiting {backoff:.1f}s...")
|
|
await asyncio.sleep(backoff)
|
|
raise RuntimeError("Failed to embed after retries")
|
|
|
|
def load_json() -> List[Dict]:
|
|
ot = json.loads(Path(Path(JSON_DIR)/'old_testament.json').read_text('utf-8'))
|
|
nt = json.loads(Path(Path(JSON_DIR)/'new_testament.json').read_text('utf-8'))
|
|
verses = []
|
|
for test in (ot, nt):
|
|
testament = test.get('testament')
|
|
for book in test.get('books', []):
|
|
bname = book.get('name')
|
|
for ch in book.get('chapters', []):
|
|
cnum = int(ch.get('chapterNum'))
|
|
for v in ch.get('verses', []):
|
|
vnum = int(v.get('verseNum'))
|
|
text = str(v.get('text') or '').strip()
|
|
if text:
|
|
verses.append({
|
|
'testament': testament,
|
|
'book': bname,
|
|
'chapter': cnum,
|
|
'verse': vnum,
|
|
'text_raw': text,
|
|
'text_norm': normalize(text),
|
|
})
|
|
return verses
|
|
|
|
async def main():
|
|
print("Starting JSON embedding ingestion...", JSON_DIR)
|
|
verses = load_json()
|
|
print("Verses loaded:", len(verses))
|
|
|
|
batch_size = int(os.getenv('BATCH_SIZE', '128'))
|
|
|
|
# Prepare schema/table
|
|
with psycopg.connect(DB_URL) as conn:
|
|
with conn.cursor() as cur:
|
|
print(f"Ensuring schema/table {TABLE_FQN} ...")
|
|
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
|
|
cur.execute(create_table_sql())
|
|
cur.execute(create_indexes_sql())
|
|
conn.commit()
|
|
|
|
async with httpx.AsyncClient() as client:
|
|
with psycopg.connect(DB_URL, autocommit=False) as conn:
|
|
with conn.cursor() as cur:
|
|
for i in range(0, len(verses), batch_size):
|
|
batch = verses[i:i+batch_size]
|
|
inputs = [v['text_norm'] for v in batch]
|
|
embs = await embed_batch(client, inputs)
|
|
rows = []
|
|
ts_lang = 'english' if LANG_CODE.lower().startswith('en') else 'simple'
|
|
for v, e in zip(batch, embs):
|
|
rows.append({ **v, 'ts_lang': ts_lang, 'embedding': e })
|
|
cur.executemany(upsert_sql(), rows)
|
|
conn.commit()
|
|
print(f"Upserted {len(rows)} verses... {i+len(rows)}/{len(verses)}")
|
|
|
|
print("Creating IVFFLAT index...")
|
|
with psycopg.connect(DB_URL, autocommit=True) as conn:
|
|
with conn.cursor() as cur:
|
|
cur.execute(f"VACUUM ANALYZE {TABLE_FQN};")
|
|
try:
|
|
cur.execute(f"""
|
|
CREATE INDEX IF NOT EXISTS idx_vec_ivfflat_{TABLE_BASENAME}
|
|
ON {TABLE_FQN} USING ivfflat (embedding vector_cosine_ops)
|
|
WITH (lists = 200);
|
|
""")
|
|
except Exception as e:
|
|
print('IVFFLAT creation skipped (tune maintenance_work_mem):', e)
|
|
|
|
print("✅ JSON embedding ingestion completed successfully!")
|
|
|
|
if __name__ == '__main__':
|
|
asyncio.run(main())
|
|
|