Add backend with analytics, notifications, and enhanced features
Some checks failed
Backend CI/CD Pipeline / Lint and Test Backend (push) Has been cancelled
CI/CD Pipeline / Lint and Test (push) Has been cancelled
Backend CI/CD Pipeline / E2E Tests Backend (push) Has been cancelled
Backend CI/CD Pipeline / Build Backend Application (push) Has been cancelled
Backend CI/CD Pipeline / Performance Testing (push) Has been cancelled
CI/CD Pipeline / E2E Tests (push) Has been cancelled
CI/CD Pipeline / Build Application (push) Has been cancelled
Some checks failed
Backend CI/CD Pipeline / Lint and Test Backend (push) Has been cancelled
CI/CD Pipeline / Lint and Test (push) Has been cancelled
Backend CI/CD Pipeline / E2E Tests Backend (push) Has been cancelled
Backend CI/CD Pipeline / Build Backend Application (push) Has been cancelled
Backend CI/CD Pipeline / Performance Testing (push) Has been cancelled
CI/CD Pipeline / E2E Tests (push) Has been cancelled
CI/CD Pipeline / Build Application (push) Has been cancelled
Backend: - Complete NestJS backend implementation with comprehensive features - Analytics: Weekly/monthly reports with PDF/CSV export - Smart notifications: Persistent notifications with milestones and anomaly detection - AI safety: Medical disclaimer triggers and prompt injection protection - COPPA/GDPR compliance: Full audit logging system Frontend: - Updated settings page and analytics components - API integration improvements Docs: - Added implementation gaps tracking - Azure OpenAI integration documentation - Testing and post-launch summaries 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
722
docs/product-analytics-dashboard.md
Normal file
722
docs/product-analytics-dashboard.md
Normal file
@@ -0,0 +1,722 @@
|
||||
# Product Analytics Dashboard Guide
|
||||
## Metrics, KPIs, and Data-Driven Decision Making
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
This document defines the key metrics, analytics dashboards, and monitoring strategies for the Maternal App to enable data-driven product decisions and rapid iteration based on user behavior.
|
||||
|
||||
### Success Criteria (from Implementation Plan)
|
||||
|
||||
**MVP Launch (Month 1)**
|
||||
- 1,000 downloads
|
||||
- 60% day-7 retention
|
||||
- 4.0+ app store rating
|
||||
- <2% crash rate
|
||||
- 5+ activities logged per day per active user
|
||||
- 70% of users trying AI assistant
|
||||
|
||||
**3-Month Goals**
|
||||
- 10,000 active users
|
||||
- 500 premium subscribers
|
||||
- 50% month-over-month growth
|
||||
- 4.5+ app store rating
|
||||
|
||||
**6-Month Vision**
|
||||
- 50,000 active users
|
||||
- 2,500 premium subscribers
|
||||
- Break-even on operational costs
|
||||
|
||||
---
|
||||
|
||||
## Key Performance Indicators (KPIs)
|
||||
|
||||
### 1. User Acquisition Metrics
|
||||
|
||||
#### Download & Registration Funnel
|
||||
```
|
||||
Metric Target Formula
|
||||
─────────────────────────────────────────────────────
|
||||
App Store Impressions 100,000 Total views
|
||||
Download Rate 3% Downloads / Impressions
|
||||
Registration Rate 75% Signups / Downloads
|
||||
Onboarding Completion 90% Completed / Started
|
||||
Time to First Value < 2 min First activity logged
|
||||
```
|
||||
|
||||
**Dashboard Queries**:
|
||||
```sql
|
||||
-- Daily registration funnel
|
||||
SELECT
|
||||
DATE(created_at) as date,
|
||||
COUNT(*) FILTER (WHERE step = 'download') as downloads,
|
||||
COUNT(*) FILTER (WHERE step = 'registration_started') as started_registration,
|
||||
COUNT(*) FILTER (WHERE step = 'registration_completed') as completed_registration,
|
||||
COUNT(*) FILTER (WHERE step = 'onboarding_completed') as completed_onboarding,
|
||||
COUNT(*) FILTER (WHERE step = 'first_activity') as first_activity
|
||||
FROM user_funnel_events
|
||||
WHERE created_at >= CURRENT_DATE - INTERVAL '30 days'
|
||||
GROUP BY DATE(created_at)
|
||||
ORDER BY date DESC;
|
||||
|
||||
-- Conversion rates by channel
|
||||
SELECT
|
||||
acquisition_channel,
|
||||
COUNT(*) as total_users,
|
||||
AVG(CASE WHEN onboarding_completed THEN 1 ELSE 0 END) as onboarding_completion_rate,
|
||||
AVG(time_to_first_activity_minutes) as avg_time_to_value
|
||||
FROM users
|
||||
WHERE created_at >= CURRENT_DATE - INTERVAL '30 days'
|
||||
GROUP BY acquisition_channel;
|
||||
```
|
||||
|
||||
### 2. Engagement Metrics
|
||||
|
||||
#### Daily Active Users (DAU) / Monthly Active Users (MAU)
|
||||
```typescript
|
||||
// Analytics service tracking
|
||||
export interface EngagementMetrics {
|
||||
dau: number; // Users active in last 24h
|
||||
wau: number; // Users active in last 7 days
|
||||
mau: number; // Users active in last 30 days
|
||||
dauMauRatio: number; // Stickiness: DAU/MAU (target: >20%)
|
||||
averageSessionDuration: number; // Minutes (target: >5 min)
|
||||
sessionsPerUser: number; // Per day (target: >2)
|
||||
}
|
||||
```
|
||||
|
||||
**Dashboard Queries**:
|
||||
```sql
|
||||
-- DAU/WAU/MAU trend
|
||||
WITH daily_users AS (
|
||||
SELECT
|
||||
DATE(last_active_at) as date,
|
||||
user_id
|
||||
FROM user_sessions
|
||||
WHERE last_active_at >= CURRENT_DATE - INTERVAL '30 days'
|
||||
)
|
||||
SELECT
|
||||
date,
|
||||
COUNT(DISTINCT user_id) as dau,
|
||||
COUNT(DISTINCT user_id) FILTER (
|
||||
WHERE date >= CURRENT_DATE - INTERVAL '7 days'
|
||||
) OVER () as wau,
|
||||
COUNT(DISTINCT user_id) OVER () as mau,
|
||||
ROUND(COUNT(DISTINCT user_id)::numeric /
|
||||
NULLIF(COUNT(DISTINCT user_id) OVER (), 0) * 100, 2) as dau_mau_ratio
|
||||
FROM daily_users
|
||||
GROUP BY date
|
||||
ORDER BY date DESC;
|
||||
|
||||
-- Power users (top 20% by activity)
|
||||
SELECT
|
||||
user_id,
|
||||
COUNT(*) as total_activities,
|
||||
COUNT(DISTINCT DATE(created_at)) as active_days,
|
||||
AVG(session_duration_seconds) / 60 as avg_session_minutes
|
||||
FROM activities
|
||||
WHERE created_at >= CURRENT_DATE - INTERVAL '30 days'
|
||||
GROUP BY user_id
|
||||
HAVING COUNT(*) > (
|
||||
SELECT PERCENTILE_CONT(0.8) WITHIN GROUP (ORDER BY activity_count)
|
||||
FROM (SELECT COUNT(*) as activity_count FROM activities GROUP BY user_id) counts
|
||||
)
|
||||
ORDER BY total_activities DESC;
|
||||
```
|
||||
|
||||
#### Feature Adoption
|
||||
```typescript
|
||||
export interface FeatureAdoption {
|
||||
feature: string;
|
||||
totalUsers: number;
|
||||
adoptionRate: number; // % of total users
|
||||
timeToAdoption: number; // Days since signup
|
||||
retentionAfterAdoption: number; // % still using after 7 days
|
||||
}
|
||||
|
||||
// Target adoption rates:
|
||||
const targetAdoption = {
|
||||
activityTracking: 0.95, // 95% core feature
|
||||
aiAssistant: 0.70, // 70% AI engagement
|
||||
voiceInput: 0.40, // 40% voice adoption
|
||||
familySharing: 0.60, // 60% multi-user
|
||||
analytics: 0.80, // 80% view insights
|
||||
exportReports: 0.25, // 25% premium feature
|
||||
};
|
||||
```
|
||||
|
||||
**Dashboard Queries**:
|
||||
```sql
|
||||
-- Feature adoption over time
|
||||
SELECT
|
||||
feature_name,
|
||||
COUNT(DISTINCT user_id) as users,
|
||||
COUNT(DISTINCT user_id)::float /
|
||||
(SELECT COUNT(*) FROM users WHERE created_at <= CURRENT_DATE) as adoption_rate,
|
||||
AVG(EXTRACT(DAY FROM first_use_at - u.created_at)) as avg_days_to_adoption
|
||||
FROM feature_usage fu
|
||||
JOIN users u ON fu.user_id = u.id
|
||||
WHERE fu.first_use_at >= CURRENT_DATE - INTERVAL '30 days'
|
||||
GROUP BY feature_name
|
||||
ORDER BY adoption_rate DESC;
|
||||
```
|
||||
|
||||
### 3. Retention Metrics
|
||||
|
||||
#### Cohort Retention Analysis
|
||||
```typescript
|
||||
export interface CohortRetention {
|
||||
cohort: string; // e.g., "2025-01-W1"
|
||||
day0: number; // 100% (signup)
|
||||
day1: number; // Target: >40%
|
||||
day7: number; // Target: >60%
|
||||
day30: number; // Target: >40%
|
||||
day90: number; // Target: >30%
|
||||
}
|
||||
```
|
||||
|
||||
**Dashboard Queries**:
|
||||
```sql
|
||||
-- Weekly cohort retention
|
||||
WITH cohorts AS (
|
||||
SELECT
|
||||
user_id,
|
||||
DATE_TRUNC('week', created_at) as cohort_week
|
||||
FROM users
|
||||
),
|
||||
retention AS (
|
||||
SELECT
|
||||
c.cohort_week,
|
||||
COUNT(DISTINCT c.user_id) as cohort_size,
|
||||
COUNT(DISTINCT CASE
|
||||
WHEN DATE(s.last_active_at) = DATE(c.cohort_week)
|
||||
THEN s.user_id
|
||||
END) as day0,
|
||||
COUNT(DISTINCT CASE
|
||||
WHEN DATE(s.last_active_at) = DATE(c.cohort_week) + INTERVAL '1 day'
|
||||
THEN s.user_id
|
||||
END) as day1,
|
||||
COUNT(DISTINCT CASE
|
||||
WHEN DATE(s.last_active_at) BETWEEN
|
||||
DATE(c.cohort_week) AND DATE(c.cohort_week) + INTERVAL '7 days'
|
||||
THEN s.user_id
|
||||
END) as day7,
|
||||
COUNT(DISTINCT CASE
|
||||
WHEN DATE(s.last_active_at) BETWEEN
|
||||
DATE(c.cohort_week) AND DATE(c.cohort_week) + INTERVAL '30 days'
|
||||
THEN s.user_id
|
||||
END) as day30
|
||||
FROM cohorts c
|
||||
LEFT JOIN user_sessions s ON c.user_id = s.user_id
|
||||
GROUP BY c.cohort_week
|
||||
)
|
||||
SELECT
|
||||
cohort_week,
|
||||
cohort_size,
|
||||
ROUND(day0::numeric / cohort_size * 100, 2) as day0_retention,
|
||||
ROUND(day1::numeric / cohort_size * 100, 2) as day1_retention,
|
||||
ROUND(day7::numeric / cohort_size * 100, 2) as day7_retention,
|
||||
ROUND(day30::numeric / cohort_size * 100, 2) as day30_retention
|
||||
FROM retention
|
||||
ORDER BY cohort_week DESC;
|
||||
```
|
||||
|
||||
### 4. Monetization Metrics
|
||||
|
||||
#### Conversion & Revenue
|
||||
```typescript
|
||||
export interface MonetizationMetrics {
|
||||
// Trial & Subscription
|
||||
trialStarts: number;
|
||||
trialToPayingConversion: number; // Target: >30%
|
||||
churnRate: number; // Target: <5% monthly
|
||||
|
||||
// Revenue
|
||||
mrr: number; // Monthly Recurring Revenue
|
||||
arpu: number; // Average Revenue Per User
|
||||
ltv: number; // Lifetime Value
|
||||
cac: number; // Customer Acquisition Cost
|
||||
ltvCacRatio: number; // Target: >3
|
||||
|
||||
// Pricing tiers
|
||||
premiumSubscribers: number;
|
||||
premiumAdoptionRate: number; // % of active users
|
||||
}
|
||||
```
|
||||
|
||||
**Dashboard Queries**:
|
||||
```sql
|
||||
-- MRR trend and growth
|
||||
SELECT
|
||||
DATE_TRUNC('month', subscription_start_date) as month,
|
||||
COUNT(*) as new_subscriptions,
|
||||
COUNT(*) FILTER (WHERE previous_subscription_id IS NOT NULL) as upgrades,
|
||||
COUNT(*) FILTER (WHERE subscription_end_date IS NOT NULL) as churned,
|
||||
SUM(price) as mrr,
|
||||
LAG(SUM(price)) OVER (ORDER BY DATE_TRUNC('month', subscription_start_date)) as previous_mrr,
|
||||
ROUND((SUM(price) - LAG(SUM(price)) OVER (ORDER BY DATE_TRUNC('month', subscription_start_date))) /
|
||||
NULLIF(LAG(SUM(price)) OVER (ORDER BY DATE_TRUNC('month', subscription_start_date)), 0) * 100, 2
|
||||
) as mrr_growth_rate
|
||||
FROM subscriptions
|
||||
GROUP BY month
|
||||
ORDER BY month DESC;
|
||||
|
||||
-- LTV calculation
|
||||
WITH user_revenue AS (
|
||||
SELECT
|
||||
user_id,
|
||||
SUM(amount) as total_revenue,
|
||||
MIN(payment_date) as first_payment,
|
||||
MAX(payment_date) as last_payment,
|
||||
COUNT(*) as payment_count
|
||||
FROM payments
|
||||
WHERE status = 'completed'
|
||||
GROUP BY user_id
|
||||
)
|
||||
SELECT
|
||||
AVG(total_revenue) as avg_ltv,
|
||||
PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY total_revenue) as median_ltv,
|
||||
AVG(EXTRACT(DAY FROM last_payment - first_payment)) as avg_lifetime_days
|
||||
FROM user_revenue;
|
||||
|
||||
-- Churn analysis
|
||||
SELECT
|
||||
DATE_TRUNC('month', cancelled_at) as month,
|
||||
COUNT(*) as churned_users,
|
||||
AVG(EXTRACT(DAY FROM cancelled_at - subscription_start_date)) as avg_days_before_churn,
|
||||
cancellation_reason,
|
||||
COUNT(*) FILTER (WHERE cancellation_reason IS NOT NULL) as reason_count
|
||||
FROM subscriptions
|
||||
WHERE cancelled_at IS NOT NULL
|
||||
GROUP BY month, cancellation_reason
|
||||
ORDER BY month DESC, reason_count DESC;
|
||||
```
|
||||
|
||||
### 5. Product Quality Metrics
|
||||
|
||||
#### Technical Health
|
||||
```typescript
|
||||
export interface QualityMetrics {
|
||||
// Performance
|
||||
apiResponseTimeP95: number; // Target: <2s
|
||||
apiResponseTimeP99: number; // Target: <3s
|
||||
errorRate: number; // Target: <1%
|
||||
|
||||
// Reliability
|
||||
uptime: number; // Target: >99.9%
|
||||
crashFreeUsers: number; // Target: >98%
|
||||
crashFreeS essions: number; // Target: >99.5%
|
||||
|
||||
// User satisfaction
|
||||
appStoreRating: number; // Target: >4.0
|
||||
nps: number; // Net Promoter Score (target: >50)
|
||||
csat: number; // Customer Satisfaction (target: >80%)
|
||||
}
|
||||
```
|
||||
|
||||
**Dashboard Queries**:
|
||||
```sql
|
||||
-- API performance monitoring
|
||||
SELECT
|
||||
DATE_TRUNC('hour', timestamp) as hour,
|
||||
endpoint,
|
||||
COUNT(*) as request_count,
|
||||
ROUND(AVG(response_time_ms), 2) as avg_response_time,
|
||||
PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY response_time_ms) as p95_response_time,
|
||||
PERCENTILE_CONT(0.99) WITHIN GROUP (ORDER BY response_time_ms) as p99_response_time,
|
||||
COUNT(*) FILTER (WHERE status_code >= 500) as server_errors,
|
||||
COUNT(*) FILTER (WHERE status_code >= 400 AND status_code < 500) as client_errors
|
||||
FROM api_logs
|
||||
WHERE timestamp >= NOW() - INTERVAL '24 hours'
|
||||
GROUP BY hour, endpoint
|
||||
HAVING COUNT(*) > 100 -- Only endpoints with significant traffic
|
||||
ORDER BY hour DESC, p99_response_time DESC;
|
||||
|
||||
-- Crash analytics
|
||||
SELECT
|
||||
DATE(created_at) as date,
|
||||
platform,
|
||||
app_version,
|
||||
COUNT(DISTINCT user_id) as affected_users,
|
||||
COUNT(*) as crash_count,
|
||||
error_message,
|
||||
stack_trace
|
||||
FROM error_logs
|
||||
WHERE severity = 'fatal'
|
||||
AND created_at >= CURRENT_DATE - INTERVAL '7 days'
|
||||
GROUP BY date, platform, app_version, error_message, stack_trace
|
||||
ORDER BY affected_users DESC;
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Analytics Dashboard Templates
|
||||
|
||||
### 1. Executive Dashboard (Daily Review)
|
||||
|
||||
**Key Metrics Card Layout**:
|
||||
```
|
||||
┌─────────────────────────────────────────────────────┐
|
||||
│ Daily Active Users │ MRR │ Uptime │
|
||||
│ 5,234 ↑ 12% │ $12,450 ↑ 8% │ 99.98% │
|
||||
├─────────────────────────────────────────────────────┤
|
||||
│ New Signups │ Churn Rate │ NPS │
|
||||
│ 342 ↑ 5% │ 4.2% ↓ 0.3% │ 62 ↑ 3 │
|
||||
└─────────────────────────────────────────────────────┘
|
||||
|
||||
📊 7-Day User Growth Trend
|
||||
[Line chart: DAU over time]
|
||||
|
||||
📊 Feature Adoption (Last 7 Days)
|
||||
[Bar chart: % of users by feature]
|
||||
|
||||
🚨 Alerts & Issues
|
||||
• P95 response time elevated (2.3s, target: 2.0s)
|
||||
• Crash rate on Android 1.2.0 (3.1%, target: <2%)
|
||||
```
|
||||
|
||||
### 2. Product Analytics Dashboard
|
||||
|
||||
**User Journey Funnel**:
|
||||
```sql
|
||||
-- Onboarding funnel conversion
|
||||
SELECT
|
||||
'App Download' as step,
|
||||
1 as step_number,
|
||||
COUNT(*) as users,
|
||||
100.0 as conversion_rate
|
||||
FROM downloads
|
||||
WHERE created_at >= CURRENT_DATE - INTERVAL '7 days'
|
||||
|
||||
UNION ALL
|
||||
|
||||
SELECT
|
||||
'Registration Started' as step,
|
||||
2,
|
||||
COUNT(*),
|
||||
ROUND(COUNT(*)::numeric / (SELECT COUNT(*) FROM downloads WHERE created_at >= CURRENT_DATE - INTERVAL '7 days') * 100, 2)
|
||||
FROM users
|
||||
WHERE created_at >= CURRENT_DATE - INTERVAL '7 days'
|
||||
|
||||
UNION ALL
|
||||
|
||||
SELECT
|
||||
'Onboarding Completed' as step,
|
||||
3,
|
||||
COUNT(*),
|
||||
ROUND(COUNT(*)::numeric / (SELECT COUNT(*) FROM downloads WHERE created_at >= CURRENT_DATE - INTERVAL '7 days') * 100, 2)
|
||||
FROM users
|
||||
WHERE onboarding_completed_at IS NOT NULL
|
||||
AND created_at >= CURRENT_DATE - INTERVAL '7 days'
|
||||
|
||||
UNION ALL
|
||||
|
||||
SELECT
|
||||
'First Activity Logged' as step,
|
||||
4,
|
||||
COUNT(DISTINCT user_id),
|
||||
ROUND(COUNT(DISTINCT user_id)::numeric / (SELECT COUNT(*) FROM downloads WHERE created_at >= CURRENT_DATE - INTERVAL '7 days') * 100, 2)
|
||||
FROM activities
|
||||
WHERE created_at >= CURRENT_DATE - INTERVAL '7 days'
|
||||
AND created_at <= (SELECT created_at FROM users WHERE user_id = activities.user_id) + INTERVAL '24 hours'
|
||||
|
||||
ORDER BY step_number;
|
||||
```
|
||||
|
||||
**User Segmentation**:
|
||||
```typescript
|
||||
export enum UserSegment {
|
||||
NEW_USER = 'new_user', // < 7 days
|
||||
ENGAGED = 'engaged', // 3+ activities/day
|
||||
AT_RISK = 'at_risk', // No activity in 7 days
|
||||
POWER_USER = 'power_user', // Top 20% by activity
|
||||
PREMIUM = 'premium', // Paid subscription
|
||||
CHURNED = 'churned', // No activity in 30 days
|
||||
}
|
||||
|
||||
// Segment users for targeted interventions
|
||||
const segments = {
|
||||
new_user: {
|
||||
criteria: 'days_since_signup < 7',
|
||||
action: 'Send onboarding emails',
|
||||
},
|
||||
engaged: {
|
||||
criteria: 'activities_per_day >= 3',
|
||||
action: 'Upsell premium features',
|
||||
},
|
||||
at_risk: {
|
||||
criteria: 'days_since_last_activity >= 7 AND < 30',
|
||||
action: 'Re-engagement campaign',
|
||||
},
|
||||
churned: {
|
||||
criteria: 'days_since_last_activity >= 30',
|
||||
action: 'Win-back campaign',
|
||||
},
|
||||
};
|
||||
```
|
||||
|
||||
### 3. A/B Testing Dashboard
|
||||
|
||||
**Experiment Tracking**:
|
||||
```typescript
|
||||
export interface ABTest {
|
||||
id: string;
|
||||
name: string;
|
||||
hypothesis: string;
|
||||
variants: {
|
||||
control: {
|
||||
users: number;
|
||||
conversionRate: number;
|
||||
};
|
||||
variant: {
|
||||
users: number;
|
||||
conversionRate: number;
|
||||
};
|
||||
};
|
||||
pValue: number; // Statistical significance
|
||||
winner?: 'control' | 'variant';
|
||||
status: 'running' | 'completed' | 'cancelled';
|
||||
}
|
||||
|
||||
// Example: Test new onboarding flow
|
||||
const onboardingTest: ABTest = {
|
||||
id: 'exp_001',
|
||||
name: 'New Onboarding Flow',
|
||||
hypothesis: 'Simplified 3-step onboarding will increase completion rate from 75% to 85%',
|
||||
variants: {
|
||||
control: {
|
||||
users: 1000,
|
||||
conversionRate: 0.75,
|
||||
},
|
||||
variant: {
|
||||
users: 1000,
|
||||
conversionRate: 0.82,
|
||||
},
|
||||
},
|
||||
pValue: 0.03, // Statistically significant (< 0.05)
|
||||
winner: 'variant',
|
||||
status: 'completed',
|
||||
};
|
||||
```
|
||||
|
||||
**Dashboard Queries**:
|
||||
```sql
|
||||
-- A/B test results
|
||||
WITH test_users AS (
|
||||
SELECT
|
||||
experiment_id,
|
||||
variant,
|
||||
user_id,
|
||||
CASE WHEN action_completed THEN 1 ELSE 0 END as converted
|
||||
FROM ab_test_assignments
|
||||
WHERE experiment_id = 'exp_001'
|
||||
)
|
||||
SELECT
|
||||
variant,
|
||||
COUNT(*) as total_users,
|
||||
SUM(converted) as conversions,
|
||||
ROUND(AVG(converted) * 100, 2) as conversion_rate,
|
||||
ROUND(STDDEV(converted), 4) as std_dev
|
||||
FROM test_users
|
||||
GROUP BY variant;
|
||||
|
||||
-- Calculate statistical significance (chi-square test)
|
||||
-- Use external tool or statistics library
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Monitoring & Alerting
|
||||
|
||||
### Alert Rules
|
||||
|
||||
**Critical Alerts** (PagerDuty/Slack)
|
||||
```yaml
|
||||
alerts:
|
||||
- name: "High Error Rate"
|
||||
condition: "error_rate > 5%"
|
||||
window: "5 minutes"
|
||||
severity: "critical"
|
||||
notification: "pagerduty"
|
||||
|
||||
- name: "API Response Time Degradation"
|
||||
condition: "p95_response_time > 3s"
|
||||
window: "10 minutes"
|
||||
severity: "high"
|
||||
notification: "slack"
|
||||
|
||||
- name: "Database Connection Pool Exhausted"
|
||||
condition: "active_connections >= 95% of pool_size"
|
||||
window: "1 minute"
|
||||
severity: "critical"
|
||||
notification: "pagerduty"
|
||||
|
||||
- name: "Crash Rate Spike"
|
||||
condition: "crash_rate > 2%"
|
||||
window: "1 hour"
|
||||
severity: "high"
|
||||
notification: "slack"
|
||||
```
|
||||
|
||||
**Business Alerts** (Email/Slack)
|
||||
```yaml
|
||||
alerts:
|
||||
- name: "Daily Active Users Drop"
|
||||
condition: "today_dau < yesterday_dau * 0.8"
|
||||
window: "daily"
|
||||
severity: "medium"
|
||||
notification: "email"
|
||||
|
||||
- name: "Churn Rate Increase"
|
||||
condition: "monthly_churn > 7%"
|
||||
window: "weekly"
|
||||
severity: "medium"
|
||||
notification: "slack"
|
||||
|
||||
- name: "Low Onboarding Completion"
|
||||
condition: "onboarding_completion_rate < 80%"
|
||||
window: "daily"
|
||||
severity: "low"
|
||||
notification: "email"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Rapid Iteration Framework
|
||||
|
||||
### Week 1-2 Post-Launch: Monitoring & Triage
|
||||
```markdown
|
||||
**Focus**: Identify and fix critical issues
|
||||
|
||||
Daily Tasks:
|
||||
- [ ] Review crash reports (target: <2%)
|
||||
- [ ] Check error logs and API failures
|
||||
- [ ] Monitor onboarding completion rate (target: >90%)
|
||||
- [ ] Track day-1 retention (target: >40%)
|
||||
|
||||
Weekly Review:
|
||||
- Analyze user feedback from in-app surveys
|
||||
- Identify top 3 pain points
|
||||
- Prioritize bug fixes vs. feature requests
|
||||
- Plan hotfix releases if needed
|
||||
```
|
||||
|
||||
### Week 3-4: Optimization
|
||||
```markdown
|
||||
**Focus**: Improve core metrics
|
||||
|
||||
Experiments to Run:
|
||||
1. A/B test onboarding flow variations
|
||||
2. Test different push notification timings
|
||||
3. Optimize AI response quality
|
||||
4. Improve activity tracking UX
|
||||
|
||||
Success Metrics:
|
||||
- Increase day-7 retention to 60%
|
||||
- Increase AI assistant usage to 70%
|
||||
- Reduce time-to-first-value to <2 minutes
|
||||
```
|
||||
|
||||
### Month 2: Feature Iteration
|
||||
```markdown
|
||||
**Focus**: Expand value proposition
|
||||
|
||||
Based on Data:
|
||||
- Identify most-used features (double down)
|
||||
- Identify least-used features (improve or remove)
|
||||
- Analyze user segments (power users vs. casual)
|
||||
- Test premium feature adoption
|
||||
|
||||
New Features to Test:
|
||||
- Sleep coaching (if sleep tracking is popular)
|
||||
- Meal planning (if feeding tracking is high-engagement)
|
||||
- Community forums (if users request social features)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Tools & Integration
|
||||
|
||||
### Recommended Analytics Stack
|
||||
|
||||
**Core Analytics**: PostHog (open-source, self-hosted)
|
||||
```typescript
|
||||
// Backend integration
|
||||
import { PostHog } from 'posthog-node';
|
||||
|
||||
const posthog = new PostHog(
|
||||
process.env.POSTHOG_API_KEY,
|
||||
{ host: 'https://app.posthog.com' }
|
||||
);
|
||||
|
||||
// Track events
|
||||
posthog.capture({
|
||||
distinctId: userId,
|
||||
event: 'activity_logged',
|
||||
properties: {
|
||||
type: 'feeding',
|
||||
method: 'voice',
|
||||
},
|
||||
});
|
||||
|
||||
// User properties
|
||||
posthog.identify({
|
||||
distinctId: userId,
|
||||
properties: {
|
||||
email: user.email,
|
||||
isPremium: subscription.isPremium,
|
||||
familySize: family.members.length,
|
||||
},
|
||||
});
|
||||
```
|
||||
|
||||
**Error Tracking**: Sentry
|
||||
```typescript
|
||||
import * as Sentry from '@sentry/node';
|
||||
|
||||
Sentry.init({
|
||||
dsn: process.env.SENTRY_DSN,
|
||||
environment: process.env.NODE_ENV,
|
||||
tracesSampleRate: 1.0,
|
||||
});
|
||||
|
||||
// Automatic error capture
|
||||
// Manual events
|
||||
Sentry.captureMessage('User encountered issue', 'warning');
|
||||
```
|
||||
|
||||
**Uptime Monitoring**: UptimeRobot / Pingdom
|
||||
```yaml
|
||||
checks:
|
||||
- name: "API Health"
|
||||
url: "https://api.maternalapp.com/health"
|
||||
interval: "1 minute"
|
||||
|
||||
- name: "Web App"
|
||||
url: "https://app.maternalapp.com"
|
||||
interval: "1 minute"
|
||||
```
|
||||
|
||||
**Performance**: Grafana + Prometheus
|
||||
```yaml
|
||||
# prometheus.yml
|
||||
scrape_configs:
|
||||
- job_name: 'maternal-app-backend'
|
||||
static_configs:
|
||||
- targets: ['localhost:3000/metrics']
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Conclusion
|
||||
|
||||
This analytics framework enables:
|
||||
|
||||
1. **Data-Driven Decisions**: Track what matters
|
||||
2. **Rapid Iteration**: Identify and fix issues quickly
|
||||
3. **User Understanding**: Segment and personalize
|
||||
4. **Business Growth**: Monitor revenue and churn
|
||||
5. **Product Quality**: Maintain high standards
|
||||
|
||||
Review dashboards daily, iterate weekly, and adjust strategy monthly based on real-world usage data.
|
||||
Reference in New Issue
Block a user