250 lines
10 KiB
Python
Executable File
250 lines
10 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import json
|
|
import os
|
|
import shutil
|
|
import datetime
|
|
import re
|
|
from pathlib import Path
|
|
from dateutil.relativedelta import relativedelta
|
|
import openpyxl
|
|
|
|
def create_excel_from_template():
|
|
"""
|
|
Create a copy of the Excel template, replacing {store_name} with the value from config.json
|
|
and save it to the output folder.
|
|
"""
|
|
# Define paths
|
|
script_dir = os.path.dirname(os.path.abspath(__file__))
|
|
config_path = os.path.join(script_dir, 'config.json')
|
|
template_path = os.path.join(script_dir, 'template', 'Footprints AI for {store_name} - Retail Media Business Case Calculations.xlsx')
|
|
output_dir = os.path.join(script_dir, 'output')
|
|
|
|
# Ensure output directory exists
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
# Read config.json to get store_name, starting_date, and duration
|
|
try:
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
user_data = config.get('user_data', {})
|
|
store_name = user_data.get('store_name', '')
|
|
starting_date = user_data.get('starting_date', '')
|
|
duration = user_data.get('duration', 36)
|
|
|
|
# If store_name is empty, use a default value
|
|
if not store_name:
|
|
store_name = "Your Store"
|
|
|
|
# Calculate years array based on starting_date and duration
|
|
years = calculate_years(starting_date, duration)
|
|
print(f"Years in the period: {years}")
|
|
except Exception as e:
|
|
print(f"Error reading config file: {e}")
|
|
return False
|
|
|
|
# Use first and last years from the array in the filename
|
|
year_range = ""
|
|
if years and len(years) > 0:
|
|
if len(years) == 1:
|
|
year_range = f"{years[0]}"
|
|
else:
|
|
year_range = f"{years[0]}-{years[-1]}"
|
|
else:
|
|
# Fallback to current year if years array is empty
|
|
current_year = datetime.datetime.now().year
|
|
year_range = f"{current_year}"
|
|
|
|
# Create output filename with store_name and year range
|
|
output_filename = f"Footprints AI for {store_name} - Retail Media Business Case Calculations {year_range}.xlsx"
|
|
output_path = os.path.join(output_dir, output_filename)
|
|
|
|
# Copy the template to the output directory with the new name
|
|
try:
|
|
shutil.copy2(template_path, output_path)
|
|
print(f"Excel file created successfully: {output_path}")
|
|
|
|
# Now inject variables from config.json into the Variables sheet
|
|
inject_variables(output_path, config)
|
|
|
|
return True
|
|
except Exception as e:
|
|
print(f"Error creating Excel file: {e}")
|
|
return False
|
|
|
|
def calculate_years(starting_date, duration):
|
|
"""
|
|
Calculate an array of years that appear in the period from starting_date for duration months.
|
|
|
|
Args:
|
|
starting_date (str): Date in format dd/mm/yyyy or dd.mm.yyyy
|
|
duration (int): Number of months, including the starting month
|
|
|
|
Returns:
|
|
list: Array of years in the period [year1, year2, ...]
|
|
"""
|
|
# Default result if we can't parse the date
|
|
default_years = [datetime.datetime.now().year]
|
|
|
|
# If starting_date is empty, return current year
|
|
if not starting_date:
|
|
return default_years
|
|
|
|
try:
|
|
# Try to parse the date, supporting both dd/mm/yyyy and dd.mm.yyyy formats
|
|
if '/' in starting_date:
|
|
day, month, year = map(int, starting_date.split('/'))
|
|
elif '.' in starting_date:
|
|
day, month, year = map(int, starting_date.split('.'))
|
|
else:
|
|
# If format is not recognized, return default
|
|
return default_years
|
|
|
|
# Create datetime object for starting date
|
|
start_date = datetime.datetime(year, month, day)
|
|
|
|
# Calculate end date (starting date + duration months - 1 day)
|
|
end_date = start_date + relativedelta(months=duration-1)
|
|
|
|
# Create a set of years (to avoid duplicates)
|
|
years_set = set()
|
|
|
|
# Add starting year
|
|
years_set.add(start_date.year)
|
|
|
|
# Add ending year
|
|
years_set.add(end_date.year)
|
|
|
|
# If there are years in between, add those too
|
|
for y in range(start_date.year + 1, end_date.year):
|
|
years_set.add(y)
|
|
|
|
# Convert set to sorted list
|
|
return sorted(list(years_set))
|
|
|
|
except Exception as e:
|
|
print(f"Error calculating years: {e}")
|
|
return default_years
|
|
|
|
def inject_variables(excel_path, config):
|
|
"""
|
|
Inject variables from config.json into the Variables sheet of the Excel file.
|
|
|
|
Args:
|
|
excel_path (str): Path to the Excel file
|
|
config (dict): Configuration data from config.json
|
|
"""
|
|
try:
|
|
# Load the workbook
|
|
workbook = openpyxl.load_workbook(excel_path)
|
|
|
|
# Try to find the Variables sheet
|
|
sheet_names = workbook.sheetnames
|
|
variables_sheet = None
|
|
|
|
# Print all sheet names for debugging
|
|
print("Available sheets:", sheet_names)
|
|
|
|
# Look for the Variables sheet by name (case-insensitive)
|
|
for sheet_name in sheet_names:
|
|
if "variable" in sheet_name.lower():
|
|
variables_sheet = workbook[sheet_name]
|
|
print(f"Found Variables sheet: '{sheet_name}'")
|
|
break
|
|
|
|
# If Variables sheet not found by name, try the last sheet
|
|
if variables_sheet is None and sheet_names:
|
|
last_sheet_name = sheet_names[-1]
|
|
variables_sheet = workbook[last_sheet_name]
|
|
print(f"Using last sheet '{last_sheet_name}' as Variables sheet")
|
|
|
|
# If still not found, try all sheets and look for specific cell patterns
|
|
if variables_sheet is None:
|
|
for sheet_name in sheet_names:
|
|
sheet = workbook[sheet_name]
|
|
# Check if this sheet has a cell B2 with a value
|
|
if sheet["B2"].value is not None:
|
|
variables_sheet = sheet
|
|
print(f"Using sheet '{sheet_name}' as it has data in cell B2")
|
|
break
|
|
|
|
if variables_sheet is None:
|
|
print("Warning: Variables sheet not found. No variables were injected.")
|
|
return
|
|
|
|
# Get user data from config
|
|
user_data = config.get("user_data", {})
|
|
|
|
# Map cell references to config values based on the image
|
|
cell_mappings = {
|
|
"B2": user_data.get("store_name", ""),
|
|
"B31": user_data.get("starting_date", ""),
|
|
"B32": user_data.get("duration", 36),
|
|
"B37": user_data.get("open_days_per_month", 0),
|
|
|
|
# Convenience store type
|
|
"H37": user_data.get("convenience_store_type", {}).get("stores_number", 0),
|
|
"C37": user_data.get("convenience_store_type", {}).get("monthly_transactions", 0),
|
|
# Convert boolean to 1/0 for has_digital_screens
|
|
"I37": 1 if user_data.get("convenience_store_type", {}).get("has_digital_screens", False) else 0,
|
|
"J37": user_data.get("convenience_store_type", {}).get("screen_count", 0),
|
|
"K37": user_data.get("convenience_store_type", {}).get("screen_percentage", 0),
|
|
# Convert boolean to 1/0 for has_in_store_radio
|
|
"M37": 1 if user_data.get("convenience_store_type", {}).get("has_in_store_radio", False) else 0,
|
|
"N37": user_data.get("convenience_store_type", {}).get("radio_percentage", 0),
|
|
|
|
# Supermarket store type
|
|
"H38": user_data.get("supermarket_store_type", {}).get("stores_number", 0),
|
|
"C38": user_data.get("supermarket_store_type", {}).get("monthly_transactions", 0),
|
|
# Convert boolean to 1/0 for has_digital_screens
|
|
"I38": 1 if user_data.get("supermarket_store_type", {}).get("has_digital_screens", False) else 0,
|
|
"J38": user_data.get("supermarket_store_type", {}).get("screen_count", 0),
|
|
"K38": user_data.get("supermarket_store_type", {}).get("screen_percentage", 0),
|
|
# Convert boolean to 1/0 for has_in_store_radio
|
|
"M38": 1 if user_data.get("supermarket_store_type", {}).get("has_in_store_radio", False) else 0,
|
|
"N38": user_data.get("supermarket_store_type", {}).get("radio_percentage", 0),
|
|
|
|
# Hypermarket store type
|
|
"H39": user_data.get("hypermarket_store_type", {}).get("stores_number", 0),
|
|
"C39": user_data.get("hypermarket_store_type", {}).get("monthly_transactions", 0),
|
|
# Convert boolean to 1/0 for has_digital_screens
|
|
"I39": 1 if user_data.get("hypermarket_store_type", {}).get("has_digital_screens", False) else 0,
|
|
"J39": user_data.get("hypermarket_store_type", {}).get("screen_count", 0),
|
|
"K39": user_data.get("hypermarket_store_type", {}).get("screen_percentage", 0),
|
|
# Convert boolean to 1/0 for has_in_store_radio
|
|
"M39": 1 if user_data.get("hypermarket_store_type", {}).get("has_in_store_radio", False) else 0,
|
|
"N39": user_data.get("hypermarket_store_type", {}).get("radio_percentage", 0),
|
|
|
|
# Website, App, Loyalty
|
|
"B43": user_data.get("website_visitors", 0),
|
|
"B44": user_data.get("app_users", 0),
|
|
"B45": user_data.get("loyalty_users", 0),
|
|
|
|
# Social Media
|
|
"B49": user_data.get("facebook_followers", 0),
|
|
"B50": user_data.get("instagram_followers", 0),
|
|
"B51": user_data.get("google_views", 0)
|
|
}
|
|
|
|
# Inject values into the Variables sheet
|
|
print(f"Injecting variables into sheet: {variables_sheet.title}")
|
|
for cell_ref, value in cell_mappings.items():
|
|
try:
|
|
# Check if cell exists
|
|
if cell_ref in variables_sheet:
|
|
variables_sheet[cell_ref] = value
|
|
print(f"Set {cell_ref} = {value}")
|
|
else:
|
|
print(f"Warning: Cell {cell_ref} not found in sheet")
|
|
except Exception as e:
|
|
print(f"Warning: Could not set value for cell {cell_ref}: {e}")
|
|
|
|
# Save the workbook
|
|
workbook.save(excel_path)
|
|
print(f"Variables successfully injected into {excel_path}")
|
|
|
|
except Exception as e:
|
|
print(f"Error injecting variables: {e}")
|
|
|
|
if __name__ == "__main__":
|
|
create_excel_from_template()
|