Files
biblical-guide.com/scripts/ingest_json_pgvector.py
andupetcu 686f498300 Create comprehensive bookmarks management page
Add complete bookmarks page with navigation functionality:

Features:
- Dedicated /bookmarks page for viewing all saved bookmarks
- Support for both chapter and verse bookmarks in unified view
- Statistics dashboard showing total, chapter, and verse bookmark counts
- Tabbed filtering (All, Chapters, Verses) for easy organization
- Direct navigation to Bible reading page with URL parameters
- Delete functionality for individual bookmarks
- Empty state with call-to-action to start reading

Navigation Integration:
- Add Bookmarks to main navigation menu (authenticated users only)
- Add Bookmarks to user profile dropdown menu
- Dynamic navigation based on authentication state

Bible Page Enhancements:
- URL parameter support for bookmark navigation (book, chapter, verse)
- Verse highlighting when navigating from bookmarks
- Auto-clear highlight after 3 seconds for better UX

API Endpoints:
- /api/bookmarks/all - Unified endpoint for all user bookmarks
- Returns transformed data optimized for frontend consumption

Multilingual Support:
- Full Romanian and English translations
- Consistent messaging across all bookmark interfaces

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-21 01:29:46 +03:00

170 lines
7.0 KiB
Python

import os, json, re, asyncio
from pathlib import Path
from typing import List, Dict
from dotenv import load_dotenv
import httpx
import psycopg
load_dotenv()
AZ_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT", "").rstrip("/")
AZ_API_KEY = os.getenv("AZURE_OPENAI_KEY")
AZ_API_VER = os.getenv("AZURE_OPENAI_API_VERSION", "2024-05-01-preview")
AZ_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBED_DEPLOYMENT", "embed-3")
EMBED_DIMS = int(os.getenv("EMBED_DIMS", "3072"))
DB_URL = os.getenv("DATABASE_URL")
VECTOR_SCHEMA = os.getenv("VECTOR_SCHEMA", "ai_bible")
LANG_CODE = os.getenv("LANG_CODE", "en")
TRANSLATION = os.getenv("TRANSLATION_CODE", "WEB")
JSON_DIR = os.getenv("JSON_DIR", f"data/en_bible/{TRANSLATION}")
assert AZ_ENDPOINT and AZ_API_KEY and DB_URL and JSON_DIR, "Missing required env vars"
EMBED_URL = f"{AZ_ENDPOINT}/openai/deployments/{AZ_DEPLOYMENT}/embeddings?api-version={AZ_API_VER}"
def safe_ident(s: str) -> str:
return re.sub(r"[^a-z0-9_]+", "_", s.lower()).strip("_")
TABLE_BASENAME = f"bv_{safe_ident(LANG_CODE)}_{safe_ident(TRANSLATION)}"
TABLE_FQN = f'"{VECTOR_SCHEMA}"."{TABLE_BASENAME}"'
def create_table_sql() -> str:
return f"""
CREATE SCHEMA IF NOT EXISTS "{VECTOR_SCHEMA}";
CREATE TABLE IF NOT EXISTS {TABLE_FQN} (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
testament TEXT NOT NULL,
book TEXT NOT NULL,
chapter INT NOT NULL,
verse INT NOT NULL,
ref TEXT GENERATED ALWAYS AS (book || ' ' || chapter || ':' || verse) STORED,
text_raw TEXT NOT NULL,
text_norm TEXT NOT NULL,
tsv tsvector,
embedding vector({EMBED_DIMS}),
created_at TIMESTAMPTZ DEFAULT now(),
updated_at TIMESTAMPTZ DEFAULT now()
);
"""
def create_indexes_sql() -> str:
return f"""
CREATE UNIQUE INDEX IF NOT EXISTS ux_ref_{TABLE_BASENAME} ON {TABLE_FQN} (book, chapter, verse);
CREATE INDEX IF NOT EXISTS idx_tsv_{TABLE_BASENAME} ON {TABLE_FQN} USING GIN (tsv);
CREATE INDEX IF NOT EXISTS idx_book_ch_{TABLE_BASENAME} ON {TABLE_FQN} (book, chapter);
CREATE INDEX IF NOT EXISTS idx_testament_{TABLE_BASENAME} ON {TABLE_FQN} (testament);
"""
def upsert_sql() -> str:
return f"""
INSERT INTO {TABLE_FQN} (testament, book, chapter, verse, text_raw, text_norm, tsv, embedding)
VALUES (%(testament)s, %(book)s, %(chapter)s, %(verse)s, %(text_raw)s, %(text_norm)s,
to_tsvector(COALESCE(%(ts_lang)s,'simple')::regconfig, %(text_norm)s), %(embedding)s)
ON CONFLICT (book, chapter, verse) DO UPDATE
SET text_raw=EXCLUDED.text_raw,
text_norm=EXCLUDED.text_norm,
tsv=EXCLUDED.tsv,
embedding=EXCLUDED.embedding,
updated_at=now();
"""
def normalize(s: str) -> str:
s = re.sub(r"\s+", " ", s.strip())
return s
async def embed_batch(client: httpx.AsyncClient, inputs: List[str]) -> List[List[float]]:
payload = {"input": inputs}
headers = {"api-key": AZ_API_KEY, "Content-Type": "application/json"}
for attempt in range(6):
try:
r = await client.post(EMBED_URL, headers=headers, json=payload, timeout=60)
if r.status_code == 200:
data = r.json()
ordered = sorted(data["data"], key=lambda x: x["index"])
return [d["embedding"] for d in ordered]
elif r.status_code in (429, 500, 502, 503):
backoff = 2 ** attempt + (0.25 * attempt)
print(f"Rate/Server limited ({r.status_code}), waiting {backoff:.1f}s...")
await asyncio.sleep(backoff)
else:
raise RuntimeError(f"Embedding error {r.status_code}: {r.text}")
except Exception as e:
backoff = 2 ** attempt + (0.25 * attempt)
print(f"Error on attempt {attempt + 1}: {e}, waiting {backoff:.1f}s...")
await asyncio.sleep(backoff)
raise RuntimeError("Failed to embed after retries")
def load_json() -> List[Dict]:
ot = json.loads(Path(Path(JSON_DIR)/'old_testament.json').read_text('utf-8'))
nt = json.loads(Path(Path(JSON_DIR)/'new_testament.json').read_text('utf-8'))
verses = []
for test in (ot, nt):
testament = test.get('testament')
for book in test.get('books', []):
bname = book.get('name')
for ch in book.get('chapters', []):
cnum = int(ch.get('chapterNum'))
for v in ch.get('verses', []):
vnum = int(v.get('verseNum'))
text = str(v.get('text') or '').strip()
if text:
verses.append({
'testament': testament,
'book': bname,
'chapter': cnum,
'verse': vnum,
'text_raw': text,
'text_norm': normalize(text),
})
return verses
async def main():
print("Starting JSON embedding ingestion...", JSON_DIR)
verses = load_json()
print("Verses loaded:", len(verses))
batch_size = int(os.getenv('BATCH_SIZE', '128'))
# Prepare schema/table
with psycopg.connect(DB_URL) as conn:
with conn.cursor() as cur:
print(f"Ensuring schema/table {TABLE_FQN} ...")
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
cur.execute(create_table_sql())
cur.execute(create_indexes_sql())
conn.commit()
async with httpx.AsyncClient() as client:
with psycopg.connect(DB_URL, autocommit=False) as conn:
with conn.cursor() as cur:
for i in range(0, len(verses), batch_size):
batch = verses[i:i+batch_size]
inputs = [v['text_norm'] for v in batch]
embs = await embed_batch(client, inputs)
rows = []
ts_lang = 'english' if LANG_CODE.lower().startswith('en') else 'simple'
for v, e in zip(batch, embs):
rows.append({ **v, 'ts_lang': ts_lang, 'embedding': e })
cur.executemany(upsert_sql(), rows)
conn.commit()
print(f"Upserted {len(rows)} verses... {i+len(rows)}/{len(verses)}")
print("Creating IVFFLAT index...")
with psycopg.connect(DB_URL, autocommit=True) as conn:
with conn.cursor() as cur:
cur.execute(f"VACUUM ANALYZE {TABLE_FQN};")
try:
cur.execute(f"""
CREATE INDEX IF NOT EXISTS idx_vec_ivfflat_{TABLE_BASENAME}
ON {TABLE_FQN} USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 200);
""")
except Exception as e:
print('IVFFLAT creation skipped (tune maintenance_work_mem):', e)
print("✅ JSON embedding ingestion completed successfully!")
if __name__ == '__main__':
asyncio.run(main())