Files
maternal-app/docs/azure-openai-integration-summary.md
andupetcu a91a7b009a
Some checks failed
Backend CI/CD Pipeline / Lint and Test Backend (push) Has been cancelled
CI/CD Pipeline / Lint and Test (push) Has been cancelled
Backend CI/CD Pipeline / E2E Tests Backend (push) Has been cancelled
Backend CI/CD Pipeline / Build Backend Application (push) Has been cancelled
Backend CI/CD Pipeline / Performance Testing (push) Has been cancelled
CI/CD Pipeline / E2E Tests (push) Has been cancelled
CI/CD Pipeline / Build Application (push) Has been cancelled
Add backend with analytics, notifications, and enhanced features
Backend:
- Complete NestJS backend implementation with comprehensive features
- Analytics: Weekly/monthly reports with PDF/CSV export
- Smart notifications: Persistent notifications with milestones and anomaly detection
- AI safety: Medical disclaimer triggers and prompt injection protection
- COPPA/GDPR compliance: Full audit logging system

Frontend:
- Updated settings page and analytics components
- API integration improvements

Docs:
- Added implementation gaps tracking
- Azure OpenAI integration documentation
- Testing and post-launch summaries

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-01 15:22:50 +03:00

577 lines
14 KiB
Markdown

# Azure OpenAI Integration - Implementation Summary
## Overview
The AI service has been updated to support both OpenAI and Azure OpenAI with automatic fallback, proper environment configuration, and full support for GPT-5 models including reasoning tokens.
---
## Environment Configuration
### ✅ Complete Environment Variables (.env)
```bash
# AI Services Configuration
# Primary provider: 'openai' or 'azure'
AI_PROVIDER=azure
# OpenAI Configuration (Primary - if AI_PROVIDER=openai)
OPENAI_API_KEY=sk-your-openai-api-key-here
OPENAI_MODEL=gpt-4o-mini
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
OPENAI_MAX_TOKENS=1000
# Azure OpenAI Configuration (if AI_PROVIDER=azure)
AZURE_OPENAI_ENABLED=true
# Azure OpenAI - Chat/Completion Endpoint (GPT-5)
# Each deployment has its own API key for better security and quota management
AZURE_OPENAI_CHAT_ENDPOINT=https://footprints-open-ai.openai.azure.com
AZURE_OPENAI_CHAT_DEPLOYMENT=gpt-5-mini
AZURE_OPENAI_CHAT_API_VERSION=2025-04-01-preview
AZURE_OPENAI_CHAT_API_KEY=your-chat-api-key-here
AZURE_OPENAI_CHAT_MAX_TOKENS=1000
AZURE_OPENAI_REASONING_EFFORT=medium
# Azure OpenAI - Whisper/Voice Endpoint
AZURE_OPENAI_WHISPER_ENDPOINT=https://footprints-open-ai.openai.azure.com
AZURE_OPENAI_WHISPER_DEPLOYMENT=whisper
AZURE_OPENAI_WHISPER_API_VERSION=2025-04-01-preview
AZURE_OPENAI_WHISPER_API_KEY=your-whisper-api-key-here
# Azure OpenAI - Embeddings Endpoint
AZURE_OPENAI_EMBEDDINGS_ENDPOINT=https://footprints-ai.openai.azure.com
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT=Text-Embedding-ada-002-V2
AZURE_OPENAI_EMBEDDINGS_API_VERSION=2023-05-15
AZURE_OPENAI_EMBEDDINGS_API_KEY=your-embeddings-api-key-here
```
### Configuration for Your Setup
Based on your requirements:
```bash
AI_PROVIDER=azure
AZURE_OPENAI_ENABLED=true
# Chat (GPT-5 Mini) - Separate API key
AZURE_OPENAI_CHAT_ENDPOINT=https://footprints-open-ai.openai.azure.com
AZURE_OPENAI_CHAT_DEPLOYMENT=gpt-5-mini
AZURE_OPENAI_CHAT_API_VERSION=2025-04-01-preview
AZURE_OPENAI_CHAT_API_KEY=[your_chat_key]
AZURE_OPENAI_REASONING_EFFORT=medium # or 'minimal', 'low', 'high'
# Voice (Whisper) - Separate API key
AZURE_OPENAI_WHISPER_ENDPOINT=https://footprints-open-ai.openai.azure.com
AZURE_OPENAI_WHISPER_DEPLOYMENT=whisper
AZURE_OPENAI_WHISPER_API_VERSION=2025-04-01-preview
AZURE_OPENAI_WHISPER_API_KEY=[your_whisper_key]
# Embeddings - Separate API key
AZURE_OPENAI_EMBEDDINGS_ENDPOINT=https://footprints-ai.openai.azure.com
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT=Text-Embedding-ada-002-V2
AZURE_OPENAI_EMBEDDINGS_API_VERSION=2023-05-15
AZURE_OPENAI_EMBEDDINGS_API_KEY=[your_embeddings_key]
```
### Why Separate API Keys?
Each Azure OpenAI deployment can have its own API key for:
- **Security**: Limit blast radius if a key is compromised
- **Quota Management**: Separate rate limits per service
- **Cost Tracking**: Monitor usage per deployment
- **Access Control**: Different team members can have access to different services
---
## AI Service Implementation
### ✅ Key Features
**1. Multi-Provider Support**
- Primary: Azure OpenAI (GPT-5)
- Fallback: OpenAI (GPT-4o-mini)
- Automatic failover if Azure unavailable
**2. GPT-5 Specific Features**
- ✅ Reasoning tokens tracking
- ✅ Configurable reasoning effort (minimal, low, medium, high)
- ✅ Extended context (272K input + 128K output = 400K total)
- ✅ Response metadata with token counts
**3. Response Format**
```typescript
interface ChatResponseDto {
conversationId: string;
message: string;
timestamp: Date;
metadata?: {
model?: string; // 'gpt-5-mini' or 'gpt-4o-mini'
provider?: 'openai' | 'azure';
reasoningTokens?: number; // GPT-5 only
totalTokens?: number;
};
}
```
**4. Azure GPT-5 Request**
```typescript
const requestBody = {
messages: azureMessages,
temperature: 0.7,
max_tokens: 1000,
stream: false,
reasoning_effort: 'medium', // GPT-5 specific
};
```
**5. Azure GPT-5 Response**
```typescript
{
choices: [{
message: { content: string },
reasoning_tokens: number, // NEW in GPT-5
}],
usage: {
prompt_tokens: number,
completion_tokens: number,
reasoning_tokens: number, // NEW in GPT-5
total_tokens: number,
}
}
```
---
## GPT-5 vs GPT-4 Differences
### Reasoning Tokens
**GPT-5 introduces `reasoning_tokens`**:
- Hidden tokens used for internal reasoning
- Not part of message content
- Configurable via `reasoning_effort` parameter
- Higher effort = more reasoning tokens = better quality
**Reasoning Effort Levels**:
```typescript
'minimal' // Fastest, lowest reasoning tokens
'low' // Quick responses with basic reasoning
'medium' // Balanced (default)
'high' // Most thorough, highest reasoning tokens
```
### Context Length
**GPT-5**:
- Input: 272,000 tokens (vs GPT-4's 128K)
- Output: 128,000 tokens
- Total context: 400,000 tokens
**GPT-4o**:
- Input: 128,000 tokens
- Total context: 128,000 tokens
### Token Efficiency
**GPT-5 Benefits**:
- 22% fewer output tokens vs o3
- 45% fewer tool calls
- Better performance per dollar despite reasoning overhead
### Pricing
**Azure OpenAI GPT-5**:
- Input: $1.25 / 1M tokens
- Output: $10.00 / 1M tokens
- Cached input: $0.125 / 1M (90% discount for repeated prompts)
---
## Implementation Details
### Service Initialization
The AI service now:
1. Checks `AI_PROVIDER` environment variable
2. Configures Azure OpenAI if provider is 'azure'
3. Falls back to OpenAI if Azure not configured
4. Logs which provider is active
```typescript
constructor() {
this.aiProvider = this.configService.get('AI_PROVIDER', 'openai');
if (this.aiProvider === 'azure') {
// Load Azure configuration from environment
this.azureChatEndpoint = this.configService.get('AZURE_OPENAI_CHAT_ENDPOINT');
this.azureChatDeployment = this.configService.get('AZURE_OPENAI_CHAT_DEPLOYMENT');
// ... more configuration
} else {
// Load OpenAI configuration
this.chatModel = new ChatOpenAI({ ... });
}
}
```
### Chat Method Flow
```typescript
async chat(userId, chatDto) {
// 1. Validate configuration
// 2. Get/create conversation
// 3. Build context with user data
// 4. Generate response based on provider:
if (this.aiProvider === 'azure') {
const response = await this.generateWithAzure(messages);
// Returns: { content, reasoningTokens, totalTokens }
} else {
const response = await this.generateWithOpenAI(messages);
// Returns: content string
}
// 5. Save conversation with token tracking
// 6. Return response with metadata
}
```
### Azure Generation Method
```typescript
private async generateWithAzure(messages) {
const url = `${endpoint}/openai/deployments/${deployment}/chat/completions?api-version=${apiVersion}`;
const requestBody = {
messages: azureMessages,
temperature: 0.7,
max_tokens: 1000,
reasoning_effort: 'medium', // GPT-5 parameter
};
const response = await axios.post(url, requestBody, {
headers: {
'api-key': this.azureApiKey,
'Content-Type': 'application/json',
},
});
return {
content: response.data.choices[0].message.content,
reasoningTokens: response.data.usage.reasoning_tokens,
totalTokens: response.data.usage.total_tokens,
};
}
```
### Automatic Fallback
If Azure fails, the service automatically retries with OpenAI:
```typescript
catch (error) {
// Fallback to OpenAI if Azure fails
if (this.aiProvider === 'azure' && this.chatModel) {
this.logger.warn('Azure OpenAI failed, attempting OpenAI fallback...');
this.aiProvider = 'openai';
return this.chat(userId, chatDto); // Recursive call with OpenAI
}
throw new BadRequestException('Failed to generate AI response');
}
```
---
## Testing the Integration
### 1. Check Provider Status
```bash
GET /api/v1/ai/provider-status
```
Response:
```json
{
"provider": "azure",
"model": "gpt-5-mini",
"configured": true,
"endpoint": "https://footprints-open-ai.openai.azure.com"
}
```
### 2. Test Chat with GPT-5
```bash
POST /api/v1/ai/chat
Authorization: Bearer {token}
{
"message": "How much should a 3-month-old eat per feeding?"
}
```
Response:
```json
{
"conversationId": "conv_123",
"message": "A 3-month-old typically eats...",
"timestamp": "2025-01-15T10:30:00Z",
"metadata": {
"model": "gpt-5-mini",
"provider": "azure",
"reasoningTokens": 145,
"totalTokens": 523
}
}
```
### 3. Monitor Reasoning Tokens
Check logs for GPT-5 reasoning token usage:
```
[AIService] Azure OpenAI response: {
model: 'gpt-5-mini',
finish_reason: 'stop',
prompt_tokens: 256,
completion_tokens: 122,
reasoning_tokens: 145, // GPT-5 reasoning overhead
total_tokens: 523
}
```
---
## Optimizing Reasoning Effort
### When to Use Each Level
**Minimal** (`reasoning_effort: 'minimal'`):
- Simple queries
- Quick responses needed
- Cost optimization
- Use case: "What time is it?"
**Low** (`reasoning_effort: 'low'`):
- Straightforward questions
- Fast turnaround required
- Use case: "How many oz in 120ml?"
**Medium** (`reasoning_effort: 'medium'`) - **Default**:
- Balanced performance
- Most common use cases
- Use case: "Is my baby's sleep pattern normal?"
**High** (`reasoning_effort: 'high'`):
- Complex reasoning required
- Premium features
- Use case: "Analyze my baby's feeding patterns over the last month and suggest optimizations"
### Dynamic Reasoning Effort
You can adjust based on query complexity:
```typescript
// Future enhancement: Analyze query complexity
const effort = this.determineReasoningEffort(chatDto.message);
const requestBody = {
messages: azureMessages,
reasoning_effort: effort, // Dynamic based on query
};
```
---
## Future Enhancements
### 1. Voice Service (Whisper)
Implement similar pattern for voice transcription:
```typescript
export class WhisperService {
async transcribeAudio(audioBuffer: Buffer): Promise<string> {
if (this.aiProvider === 'azure') {
return this.transcribeWithAzure(audioBuffer);
}
return this.transcribeWithOpenAI(audioBuffer);
}
private async transcribeWithAzure(audioBuffer: Buffer) {
const url = `${this.azureWhisperEndpoint}/openai/deployments/${this.azureWhisperDeployment}/audio/transcriptions?api-version=${this.azureWhisperApiVersion}`;
const formData = new FormData();
formData.append('file', new Blob([audioBuffer]), 'audio.wav');
const response = await axios.post(url, formData, {
headers: {
'api-key': this.azureWhisperApiKey, // Separate key for Whisper
},
});
return response.data.text;
}
}
```
### 2. Embeddings Service
For pattern recognition and similarity search:
```typescript
export class EmbeddingsService {
async createEmbedding(text: string): Promise<number[]> {
if (this.aiProvider === 'azure') {
return this.createEmbeddingWithAzure(text);
}
return this.createEmbeddingWithOpenAI(text);
}
private async createEmbeddingWithAzure(text: string) {
const url = `${this.azureEmbeddingsEndpoint}/openai/deployments/${this.azureEmbeddingsDeployment}/embeddings?api-version=${this.azureEmbeddingsApiVersion}`;
const response = await axios.post(url, { input: text }, {
headers: {
'api-key': this.azureEmbeddingsApiKey, // Separate key for Embeddings
},
});
return response.data.data[0].embedding;
}
}
```
### 3. Prompt Caching
Leverage Azure's cached input pricing (90% discount):
```typescript
// Reuse identical system prompts for cost savings
const systemPrompt = `You are a helpful parenting assistant...`; // Cache this
```
### 4. Streaming Responses
For better UX with long responses:
```typescript
const requestBody = {
messages: azureMessages,
stream: true, // Enable streaming
reasoning_effort: 'medium',
};
// Handle streamed response
```
---
## Troubleshooting
### Common Issues
**1. "AI service not configured"**
- Check `AI_PROVIDER` is set to 'azure'
- Verify `AZURE_OPENAI_CHAT_API_KEY` is set (not the old `AZURE_OPENAI_API_KEY`)
- Confirm `AZURE_OPENAI_CHAT_ENDPOINT` is correct
**2. "Invalid API version"**
- GPT-5 requires `2025-04-01-preview` or later
- Update `AZURE_OPENAI_CHAT_API_VERSION`
**3. "Deployment not found"**
- Verify `AZURE_OPENAI_CHAT_DEPLOYMENT` matches Azure deployment name
- Check deployment is in same region as endpoint
**4. High token usage**
- GPT-5 reasoning tokens are additional overhead
- Reduce `reasoning_effort` if cost is concern
- Use `'minimal'` for simple queries
**5. Slow responses**
- Higher `reasoning_effort` = slower responses
- Use `'low'` or `'minimal'` for time-sensitive queries
- Consider caching common responses
### Debug Logging
Enable debug logs to see requests/responses:
```typescript
this.logger.debug('Azure OpenAI request:', {
url,
deployment,
reasoning_effort,
messageCount,
});
this.logger.debug('Azure OpenAI response:', {
model,
finish_reason,
prompt_tokens,
completion_tokens,
reasoning_tokens,
total_tokens,
});
```
---
## Summary
**Fully Configured**:
- Environment variables for all Azure endpoints
- Chat (GPT-5), Whisper, Embeddings separately configurable
- No hardcoded values
**GPT-5 Support**:
- Reasoning tokens tracked and returned
- Configurable reasoning effort (minimal/low/medium/high)
- Extended 400K context window ready
**Automatic Fallback**:
- Azure → OpenAI if Azure fails
- Graceful degradation
**Monitoring**:
- Detailed logging for debugging
- Token usage tracking (including reasoning tokens)
- Provider status endpoint
**Production Ready**:
- Proper error handling
- Timeout configuration (30s)
- Metadata in responses
---
## Next Steps
1. **Add your actual API keys** to `.env`:
```bash
AZURE_OPENAI_CHAT_API_KEY=[your_chat_key]
AZURE_OPENAI_WHISPER_API_KEY=[your_whisper_key]
AZURE_OPENAI_EMBEDDINGS_API_KEY=[your_embeddings_key]
```
2. **Restart the backend** to pick up configuration:
```bash
npm run start:dev
```
3. **Test the integration**:
- Check provider status endpoint
- Send a test chat message
- Verify reasoning tokens in response
4. **Monitor token usage**:
- Review logs for reasoning token counts
- Adjust `reasoning_effort` based on usage patterns
- Consider cost optimization strategies
5. **Implement Voice & Embeddings** (optional):
- Follow similar patterns as chat service
- Use separate Azure endpoints already configured